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What Is Image Segmentation?

Image, courtesy Ondrej Drbohlav

Goal: segment image into (semantically) meaningful regions

slide credit: Vaclav Hlavac, Bastian Leibe, Kristen Grauman, Svetlana Lazebnik
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Example: Semantic Segmentation

Full-Resolution Residual Networks for Semantic
Segmentation in Street Scenes

Tobias Pohlen, Alexander Hermans,
Markus Mathias, Bastian Leibe

Visual Computing Institute, Computer Vision Group
RWTH Aachen University

,) Visual Computing Institute RWTH

[Pohlen, Hermans, Mathias, Leibe, Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes, CVPR 2017] video link

Torsten Sattler 3


https://www.youtube.com/watch?v=PNzQ4PNZSzc
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https://www.youtube.com/watch?v=PNzQ4PNZSzc

Example: Instance-Level Segmentation

video link
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https://www.youtube.com/watch?v=OOT3UIXZztE

Example: Instance-Level Segmentation
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Example: Motion Capture

Torsten Sattler

images taken from Vicon website



https://www.vicon.com/resources/case-studies/a-simple-motion-capture-system-delivering-powerful-results/
https://www.vicon.com/about-us/what-is-motion-capture/

Example: Foreground Background Segmentation

Torsten Sattler 6
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https://www.youtube.com/watch?v=OOT3UIXZztE

Image Segmentation Can Be Hard

Image, courtesy Ondfej Drbohlav

* Cannot use color to distinguish between border of cup and background
* Need some semantic understanding of what a “cup” is

slide credit: Vaclav Hlavac

Torsten Sattler



Image Segmentation As Grouping

Image, courtesy Ondrej Drbohlav

Goal: group pixels that belong together into regions

slide credit: Vaclav Hlavac

Torsten Sattler



Inspiration from Humans? - The Gestalt School

* Grouping of elements is key to human visual perception
* Founding publication by Max Wertheimer (born in Prague) in 1912

* (estalt theory was meant to be generally applicable, but main tenets
almost exclusively derived from observations of visual perception

* Psychologists showed that human visual systems seems predisposed to
group elements

“l stand at the window and see a house, trees, sky.

Theoretically | might say there were 327 brightnesses
and nuances of colour. Do | have "327"? No. | have sky,
house, and trees.”

Max Wertheimer
(1880-1943)

Untersuchungen zur Lehre von der Gestalt,

| o o | | Psychologische Forschung, Vol. 4, pp. 301-350, 1923
slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler 10



Inspiration from Humans? - The Gestalt School

* Gestalt: configuration of elements such

l . that whole is greater than sum of parts

* Properties / features derived from
relationship between elements

h I e https://en.wikipedia.org/wiki/
Gestalt _psychology

iImage source: Wikipedia

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler 11
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Gestalt Grouping Principles

@ ® ® L L @® | Not grouped
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Continuity

’ Q DQ D ’ Common Region
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slide credit: Vaclav HIavéé, Bastian Leibe image source: D. Forsyth, J. Ponce, Computer Vision - A Modern Approach, 2nd edition, Pearson, 2011
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Continuity Through Occlusions
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slide credit: Bastian Leibe




Continuity Through Occlusions

Shape explained by occlusions

slide credit: Bastian Leibe

Torsten Sattler
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Continuity Through Occlusions
6‘0‘ \

A wo

-

What do
you see”?

slide credit: VAclav Hlavad. Bastian Leibe image source: D. Forsyth, J. Ponce, Computer Vision - A Modern Approach, 2nd edition, Pearson, 2011
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Continuity Through Occlusions
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What do
you see”?
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slide credit: VAclav Hlavad. Bastian Leibe image source: D. Forsyth, J. Ponce, Computer Vision - A Modern Approach, 2nd edition, Pearson, 2011
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Grouping Can Be Very Hard
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What do
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Picture by R. C. James

slide credit: Vaclav Hlavac, Bastian Leibe
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Grouping

What do
you see”?

- I - — H A’
.. - * ‘

Can Be Very Hard

How to teach
Gestalt principles
to a machine?

Torsten Sattler 17



| ecture Overview

* A simple approach to segmentation: (intensity) thresholding

slide credit: Vaclav Hlavac
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| ecture Overview

* A simple approach to segmentation: (intensity) thresholding

 Segmentation based on spatial coherence: edge-based
segmentation, region growing

e Segmentation as a clustering problem: k-means clustering,
mean-shift clustering

* Segmentation as a statistical (unsupervised) learning
problem: expectation maximization (EM) algorithm

* Next lecture: graph-based segmentation, supervised
learning with neural networks (if time and interest)

slide credit: Vaclav Hlavac

Torsten Sattler
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| ecture Overview

stmple §
l’lel/LVLStLG '
| ¢ Segmentation based on spatial coherence: edge-based
i segmentation, region growing

* A simple approach to segmentation: (intensity) thresholding

* Segmentation as a clustering problem: k-means clustering,
i  mean-shift clustering

' * Segmentation as a statistical (unsupervised) learning
i  problem: expectation maximization (EM) algorithm

complex §

i * Next lecture: graph-based segmentation, supervised
PVL nC ip led &

learning with neural networks (if time and interest)

slide credit: Vaclav Hlavac

Torsten Sattler
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Other Segmentation Approaches Not Covered

* Template matching: detect regions in image by comparing with
templates, fitting structures in the image

* Object detection based on templates
 Parametric model detection, e.q., straight lines, circles, ellipses, ...

slide credit: Vaclav Hlavac

Torsten Sattler 19



Other Segmentation Approaches Not Covered

* Template matching: detect regions in image by comparing with
templates, fitting structures in the image

* Object detection based on templates
 Parametric model detection, e.g., straight lines, circles, ellipses, ...

e Based on unusual phenomena: segmentation by detecting unusual
structures

 Camouflage detection based on unusual texture

* Image compression: large regions as unusual occurrences that can be
heavily compressed (e.g., regions of same color)

slide credit: Vaclav Hlavac

Torsten Sattler 19



A Few Words of Advice

 There is no general purpose segmentation algorithm for all cases

slide credit: Vaclav Hlavac

Torsten Sattler
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A Few Words of Advice

 There is no general purpose segmentation algorithm for all cases

e Algorithm to use depends on circumstances:
* |ots of labelled training data — supervised learning with CNNs
 Simple structure & large color differences — thresholding
e Little to no training data — unsupervised learning via clustering

slide credit: Vaclav Hlavac
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A Few Words of Advice

 There is no general purpose segmentation algorithm for all cases

e Algorithm to use depends on circumstances:
* |ots of labelled training data — supervised learning with CNNs
 Simple structure & large color differences — thresholding
e Little to no training data — unsupervised learning via clustering

* Use prior knowledge whenever available:
 Knowledge about shape or color of an object
* Priors on position of object or region in image (e.g., images centered on
object)
* Relation between objects or regions (e.g., car always on top of road)

slide credit: Vaclav Hlavac

Torsten Sattler
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Not Covered: Feature Design

 We directly observe primary features: pixel intensities, colors, depth (range
cameras, e.g., LIDAR, Kinect), temperature (thermal cameras)

slide credit: Vaclav Hlavac

Torsten Sattler

21



Not Covered: Feature Design

 We directly observe primary features: pixel intensities, colors, depth (range
cameras, e.g., LIDAR, Kinect), temperature (thermal cameras)

 We want to identify regions in the input that belong together

slide credit: Vaclav Hlavac

Torsten Sattler

21



Not Covered: Feature Design

 We directly observe primary features: pixel intensities, colors, depth (range
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e How do we compare pixels / structures / regions? Extract features from direct
observations:
* Primary features (typically not very robust, e.g., to illumination changes)

 Secondary features: information extracted from observations, e.g., shape
parameters, texture parameters, relations between regions, motion
parameters in video, stereo disparity / depth, ...
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Not Covered: Feature Design

 We directly observe primary features: pixel intensities, colors, depth (range
cameras, e.g., LIDAR, Kinect), temperature (thermal cameras)

 We want to identify regions in the input that belong together

e How do we compare pixels / structures / regions? Extract features from direct
observations:

* Primary features (typically not very robust, e.g., to illumination changes)

 Secondary features: information extracted from observations, e.g., shape
parameters, texture parameters, relations between regions, motion
parameters in video, stereo disparity / depth, ...

* Choice of features is very important, but not covered here
* Modern choice: learn features from data — deep learning / machine learning

slide credit: Vaclav Hlavac

Torsten Sattler 21



Image Segmentation

 Goal: compute complete segmentation of image
 Subdivide the image ¥ into S disjoint regions R, R,, ..., R, i.e.,

S
I=|JR., RNR=0,i#]
=1

slide credit: Vaclav Hlavac

Torsten Sattler
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Image Segmentation

 Goal: compute complete segmentation of image
 Subdivide the image ¥ into S disjoint regions R, R,, ..., R, i.e.,

S
I=|JR., RNR=0,i#]
=1

 Simplest case: binary segmentation into foreground (objects) and
background

e Surprisingly often a valid assumption as we often do not care about
background

slide credit: Vaclav Hlavac

Torsten Sattler
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Image Segmentation via Thresholding

Torsten Sattler



Image Segmentation via Thresholding

stmple background
slide credit: Vaclav Hlavac

Torsten Sattler 23



Image Segmentation via Thresholding

DlistlwotLij

colored objects stmple backgrownd

slide credit: Vaclav Hlavac

Torsten Sattler 23



Image Segmentation via Thresholding

pixel (i, 7) with intensity (i, 7)

distinetly §

colored objects stmple backgrownd

slide credit: Vaclav Hlavac
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Image Segmentation via Thresholding

pixel (i, 7) with intensity (i, 7)

generate binary image b with

(i) = {1 if  fa,)>T
SEUZN0 i M) <T

distinetly §

colored objects stmple backgrownd

slide credit: Vaclav Hlavac
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Image Segmentation via Thresholding

pixel (i, 7) with intensity (i, 7)

generate binary image b with

o I =T
g(1,]) = . .
0 f f.) <T

distinctl Y ‘ threshold

colored objects stmple backgrownd

slide credit: Vaclav Hlavac

Torsten Sattler 23
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Original image.

slide credit: Vaclav Hlavac
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Threshold segmentation.

Threshold too low.

Torsten Sattler
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Original image.

slide credit: Vaclav Hlavac
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Threshold segmentation.  Threshold too low.

How to choose the threshold?

Torsten Sattler
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Thresholding Choices

 Band thresholding: consider range D of intensities
. | f . ]) €D
(i, ) = { /(4]

0 otherwise

S I (-

Original image. Border regions detected.

slide credit: Vaclav Hlavac

Torsten Sattler
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Thresholding Choices

 Band thresholding: consider range D of intensities
. | f . ]) €D
(i, ) = { /(4]

0 otherwise

 Locally adaptive thresholding: divide images into regions (e.g., regular grid)
and find a threshold for each region

slide credit: Vaclav Hlavac

Torsten Sattler 26



Thresholding Choices

 Band thresholding: consider range D of intensities
N B it f(i,j) €D
80.J) {() otherwise
 Locally adaptive thresholding: divide images into regions (e.g., regular grid)
and find a threshold for each region

» Multiple thresholds: use multiple thresholds for S > 2 classes
2t fa) 2T,
gi,)=+91 1 T, Zf(Gi))<T,
0 I fG)<T

slide credit: Vaclav Hlavac

Torsten Sattler 26



Thresholding Choices

e Semi-thresholding: only segment out the background, let human / other
algorithm deal with foreground

i {f(i,j) f fid) =T
S 0 R <T

slide credit: Vaclav Hlavac

Torsten Sattler
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Thresholding Choices

e Semi-thresholding: only segment out the background, let human / other
algorithm deal with foreground

i {f(i,j) f fid) =T
S 0 R <T

e p-tile thresholding: if object covers 1/p of image, find the corresponding 1/p
of histogram (e.g., when we know size of printed characters)

slide credit: Vaclav Hlavac

Torsten Sattler
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Thresholding Choices

e Semi-thresholding: only segment out the background, let human / other
algorithm deal with foreground

i) = {f(z‘J) tofap=T
5770 f i) <T
e p-tile thresholding: if object covers 1/p of image, find the corresponding 1/p

of histogram (e.g., when we know size of printed characters)

e Automatic thresholding based on histograms: compute histogram of

iIntensities, objects and background should correspond to distinct modes, find
threshold(s) separating the modes

slide credit: Vaclav Hlavac

Torsten Sattler 27



Automatic Thresholding Based On Histograms

Frequency

9000 -
8000 -
7000 -
6000 -
5000 -
4000 -
3000 -
2000 -

1000 -

Threshold

96

128

160

Intensity

Torsten Sattler
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1000 -

Threshold
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* How to handle noisy
histograms?
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Automatic Thresholding Based On Histograms

Frequency

9000 -
8000 -
7000 -
6000 -
5000 -
4000 -
3000 -

2000 -

1000 -

Threshold

96

128

160

Intensity

Torsten Sattler

* How to handle noisy
histograms?

* How to find optimal
threshold(s)?

28



Smoothing Histograms

* Noise in observations (e.g., noisy pixel intensities) — noisy / ragged histograms

slide credit: Vaclav Hlavac

Torsten Sattler 29



Smoothing Histograms

* Noise in observations (e.g., noisy pixel intensities) — noisy / ragged histograms

 |eads to multiple local extrema, makes analysis harder

slide credit: Vaclav Hlavac
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Smoothing Histograms

* Noise in observations (e.g., noisy pixel intensities) — noisy / ragged histograms
 |eads to multiple local extrema, makes analysis harder

 Smooth histogram before further processing, e.g., using 1D sliding average
filter:

slide credit: Vaclav Hlavac
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Smoothing Histograms

* Noise in observations (e.g., noisy pixel intensities) — noisy / ragged histograms
 |eads to multiple local extrema, makes analysis harder

 Smooth histogram before further processing, e.g., using 1D sliding average
filter:

» Input histogram h(i) over intensities i = 0,..., imax

slide credit: Vaclav Hlavac
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Smoothing Histograms

* Noise in observations (e.g., noisy pixel intensities) — noisy / ragged histograms
 |eads to multiple local extrema, makes analysis harder

 Smooth histogram before further processing, e.g., using 1D sliding average
filter:

» Input histogram h(i) over intensities i = 0,..., imax
» New histogram /(i) after applying sliding average with window size 2K + 1

1 K
Z h(l+])9 i:K,...,imaX—K
—-K

(i) =
2 2K +1 A

slide credit: Vaclav Hlavac

Torsten Sattler 29



"Optimal” Thresholding Via Mixture of Gaussians

slide credit: Vaclav Hlavac

Torsten Sattler 30



"Optimal” Thresholding Via Mixture of Gaussians
“optimal”
threshola

slide credit: Vaclav Hlavac
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"Optimal” Thresholding Via Mixture of Gaussians
“optimal”
threshola

slide credit: Vaclav Hlavac
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"Optimal” Thresholding Via Mixture of Gaussians
“optimal” “optimal”
threshola threshola

|

slide credit: Vaclav Hlavac

Torsten Sattler 30



"Optimal” Thresholding Via Mixture of Gaussians
“optimal” “optimal”
threshola threshola

|

Choose thresholds based on decision boundaries:
p(foreground | x) > p(background | x)

slide credit: Vaclav Hlavac

Torsten Sattler 30



Fitting A Mixture of Gaussians

* Input: observed histogram A(g)

slide credit: Vaclav Hlavac

Torsten Sattler
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Fitting A Mixture of Gaussians

* Input: observed histogram A(g)

» Estimate: approximate histogram /1,04el(g) modeled by n Gaussians

n (g — ﬂi)2

hrmodel(8) = 2 ae

=1

slide credit: Vaclav Hlavac

Torsten Sattler
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Fitting A Mixture of Gaussians

e Input: observed histogram /(g)

» Estimate: approximate histogram /1,04el(g) modeled by n Gaussians

n (g—ﬂi)z
model(8) = 2 ae
i=1
2
 Fit by minimizing 2 (h(g) — hmgde\(h))

gelG

slide credit: Vaclav Hlavac

Torsten Sattler
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Fitting A Mixture of Gaussians

* Input: observed histogram A(g)

» Estimate: approximate histogram /1,04el(g) modeled by n Gaussians

n (g—ﬂi)z
model(8) = 2 ae
i=1
2
 Fit by minimizing Z (h(g) — hmgde\(h))

gelG

e See part on expectation maximization

slide credit: Vaclav Hlavac

Torsten Sattler
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Example: Brain MR| Segmentation

 |[nput: NMR images

e Classes: white matter, grey matter, celebrities-spinal fluid (CSF)

Volume Volume Volume
% % /e

5 167 16 Gray matter

White matter

12 12 T 12

8 8 8
4 4 4
0 ' t 0 0
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

Gray level Gray level Gray level

Courtesy: Milan Sonka, University of lowa.

slide credit: Vaclav Hlavac
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Je8

Example: Brain MRI Seg

original gray matter white matter

slide credit: Vaclav Hlavac

CZECH INSTITUTE
OF INFORMATICS

CyBERNETICS. Torsten Sattler
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mentation

Courtesy: Milan Sonka,
CSF University of lowa.
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Isn't This Outdated?

Depending on application, we can ensure that
th reShOlding WOrkS We”' images taken from Vicon website

CZECH INSTITUTE
OF INFORMATICS

CyBERNETICS. Torsten Sattler 34
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https://www.vicon.com/resources/case-studies/a-simple-motion-capture-system-delivering-powerful-results/
https://www.vicon.com/about-us/what-is-motion-capture/

Isn't This Outdated?

Compute representations where thresholding works

images from [Lianos, Schonberger, Pollefeys, Sattler, VSO: Visual Semantic Odometry]

Torsten Sattler 35



Isn't This Outdated?

Compute representations where thresholding works
, set of probabilities per pixel x

p(x=car) =...
p(x = building) = ...

p(x =road) = ...

images from [Lianos, Schonberger, Pollefeys, Sattler, VSO: Visual Semantic Odometry]

Torsten Sattler 35



Isn't This Outdated?

Compute representations where thresholding works
 Set of probabillities per pixel x

p(x =car)=...
p(x = building) = ...

p(x =road) = ...

result of thresholding on
p(x = car)

images from [Lianos, Schonberger, Pollefeys, Sattler, VSO: Visual Semantic Odometry]

Torsten Sattler 35



| ecture Overview

stmple § | . : : :
newristic | © A simple approach to segmentation: (intensity) thresholding
K Segmentation based on spatial coherence: edge-based
i  segmentation, region growing
* Segmentation as a clustering problem: k-means clustering,
{  mean-shift clustering
f' * Segmentation as a statistical (unsupervised) learning
{  problem: expectation maximization (EM) algorithm
complex § _ Next lecture: graph-based segmentation, supervised
principled ¥ Jearning with neural networks (if time and interest)

slide credit: Vaclav Hlavac

Torsten Sattler
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Thresholding Summarized

* Pro: very easy to implement

slide credit: Vaclav Hlavac

Torsten Sattler
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Thresholding Summarized

* Pro: very easy to implement

* Pro: very easy to parallelize

slide credit: Vaclav Hlavac
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Thresholding Summarized

* Pro: very easy to implement

* Pro: very easy to parallelize

 Con: we are ignoring that we are looking for regions of pixels that belong
together — ignoring spatial consistency

slide credit: Vaclav Hlavac
oo B
e
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Thresholding Summarized

* Pro: very easy to implement

* Pro: very easy to parallelize

 Con: we are ignoring that we are looking for regions of pixels that belong
together — ignoring spatial consistency

slide credit: Vaclav Hlavac edes — regiOn bOundarieS

Je8
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Edge-Based Image Segmentation

e Edgels: significant edges from edge detector (e.g., Canny)

slide credit: Vaclav Hlavac
R
e
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Edge-Based Image Segmentation

e Edgels: significant edges from edge detector (e.g., Canny)

* Processing: link edges, followed by relaxation, voting, dynamic programming,
etc. to obtain region boundaries

slide credit: Vaclav Hlavac
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Edge-Based Image Segmentation

e Edgels: significant edges from edge detector (e.g., Canny)

* Processing: link edges, followed by relaxation, voting, dynamic programming,
etc. to obtain region boundaries

* | eads to partial segmentation that requires post-processing, some regions
might not be segmented at all

slide credit: Vaclav Hlavac

Torsten Sattler 38



Edge-Based

'
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original image

slide credit; Vaclav Hlavac
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Image Segmentation

edge image
(enhanced for display)
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Edge-Based Image Segmentation

original image edge image
(enhanced for display)

How to get from edge(l)s to region boundaries?

slide credit: Vaclav Hlavac

Torsten Sattler
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Thresholding Edge Responses

!

|

1

|

|= ;'..'I';: .
't

threshold 30 threshold 10 (too small)

slide credit: Vaclav Hlavac
o5
e
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Thresholding Edge Responses

thick edges, multiple pixels wide

T s e o L e o T [ -

threshold 30 threshold 10 (too small)

slide credit: Vaclav Hlavac
o5
e
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Thresholding Edge Responses

thick edges, multiple pixels wide

T s e o L e o T [ -

threshold 30 threshold 10 (too small)

How to get thin edges?

slide credit: Vaclav Hlavac
o5
e
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Non-Maximum Suppression For Thin Edges

 Compare pixel intensity to
neighbors

* Keep only local maxima

slide credit: Vaclav Hlavac

Torsten Sattler 41



Non-Maximum Suppression For Thin Edges

e Compare pixel intensity to
neighbors

* Keep only local maxima

slide credit: Vaclav Hlavac
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Non-Maximum Suppression For Thin Edges

gradient

directlon

(orthogowal to
edge direction)

slide credit: Vaclav Hlavac

Torsten Sattler

e Compare pixel intensity to
neighbors

* Keep only local maxima
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Non-Maximum Suppression For Thin Edges

gradient

directlon

(orthogowal to
edge direction)

slide credit: Vaclav Hlavac

Torsten Sattler

e Compare pixel intensity to
neighbors

* Keep only local maxima

41



Non-Maximum Suppression For Thin Edges

gradient

directlon

(orthogowal to
edge direction)

slide credit: Vaclav Hlavac

Torsten Sattler

e Compare pixel intensity to
neighbors

* Keep only local maxima

Local
MLAXLWL UM
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Non-Maximum Suppression For Thin Edges

e Compare pixel intensity to

gradient neighbors
direction * Keep only local maxima
(orthogownal to

edoe directlon) e

MLAXLW UL

Local
MLAXLWL UM

slide credit: Vaclav Hlavac
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Non-Maximum Suppression For Thin Edges

slide credit: Vaclav Hlavac

>

Torsten Sattler
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Non-Maximum Suppression & Hysteresis

Non-maximal suppression

slide credit: Vaclav Hlavac
R
e
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Non-Maximum Suppression & Hysteresis

. lots of noisy edges

Non-maximal suppression

slide credit: Vaclav Hlavac
R
e
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Non-Maximum Suppression & Hysteresis

. lots of noisy edges

Hysteresis:
Non-maximal suppression
slide credit: Vaclav Hlavac
P oporics e Torsten Sattler 43
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Non-Maximum Suppression & Hysteresis

- ,lots of noisy edges

Hysteresis:
o Start with edge pixel with edge
score above higher threshold 7high

Non-maximal suppression

slide credit: Vaclav Hlavac
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Non-Maximum Suppression & Hysteresis

- lots of noisy edges

Hysteresis:

| » Start with edge pixel with edge
o score above higher threshold Ihigh
I*

o » Follow edge as long as pixels have

edge score above lower threshold

llow

- - .o - d . | | | ! ) . _.q!!: |
= Tl g™ —_— u Ta
= ]

] — —— I. - ' :—-\—. -:; v1| ) - | — - . —_
oy Enli R B P | [T v i Ty =i, T .""_ | “ n

Non-maximal suppression

slide credit: Vaclav Hlavac
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Non-Maximum Suppression & Hysteresis

- ,lots of noisy edges

Hysteresis:

. | . . .
) . | o Start with edge pixel with edge
BN | _
[g!l;'rl. it i score above higher threshold thigh
|n."' TR 1 4l {['_’_L .
il s J==1).— o Follow edge as long as pixels have
l'lf'_Lg_ i edge score above lower threshold
Il'ri”llj[|r| HIJ;“I‘P E 74 UE | l' ::_{ d | t I
= iallgr o W |
el o=« lterate until all pixels considered

i S S —— )y ‘
oy Bl S W PO § [T v i e = e, .""— | | %

Non-maximal suppression

slide credit: Vaclav Hlavac

Torsten Sattler 43



Edge-Based Image Segmentation

Non-maximal suppression hysteresis
high threshold 70, lower 10

slide credit: Vaclav Hlavac
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Edge Relaxation

hysteresis
high threshold 70, lower 10

slide credit: Vaclav Hlavac

Torsten Sattler
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Edge Relaxation

No closed boundaries
2 Parts missing

A ey ¥
v L : r: |
) Lufﬂlﬂ {1
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4 == 'LLJ‘ a'mljﬁi:lrugl' -jﬂjfﬁ'i'maglﬁﬁ ‘_:_ﬂﬂ .
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hysteresis
high threshold 70, lower 10

slide credit: Vaclav Hlavac

Torsten Sattler
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Edge Relaxation

L No closed boundaries
2 Parts missing

Edge Relaxation:

_-_
1 ey ee—
e 2

2 L"“‘J VI TSN
i"r—i-'%fh[ﬂ o ‘iFﬁ] [[f/'lfr?ﬁ‘“ e

hysteresis
high threshold 70, lower 10

slide credit: Vaclav Hlavac

Torsten Sattler
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Edge Relaxation

No closed boundaries
2 Parts missing

Edge Relaxation:
* Attempt to close gaps in post-processing

hysteresis
high threshold 70, lower 10

slide credit: Vaclav Hlavac

Torsten Sattler
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Edge Relaxation

No closed boundaries
2 Parts missing

Edge Relaxation:
* Attempt to close gaps in post-processing

* |teratively improve edge properties based
on neighboring edges

hysteresis
high threshold 70, lower 10

slide credit: Vaclav Hlavac

Torsten Sattler 45



Edge Relaxation

No closed boundaries
2 Parts missing

Edge Relaxation:

* Attempt to close gaps in post-processing

* |teratively improve edge properties based
on neighboring edges

* Instance of a general algorithm
‘relaxation labelling”

hysteresis
high threshold 70, lower 10

slide credit: Vaclav Hlavac

Torsten Sattler 45



Edge Relaxation For Crack Edges

Example illustration here based on crack edges (Hanson, Rieseman, 19/78)

neighboring
edges
current
edge

slide credit: Vaclav Hlavac

Torsten Sattler
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Crack Edges Patterns

* 0-0 isolated edge — decrease edge confidence

slide credit: Vaclav Hlavac

Torsten Sattler



Crack Edges Patterns

* 0-0 isolated edge — decrease edge confidence
e 0-1 uncertain — weak increase, or no influence

slide credit: Vaclav Hlavac

Torsten Sattler
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Crack Edges Patterns

* 0-0 isolated edge — decrease edge confidence
e 0-1 uncertain — weak increase, or no influence
* 0-2, 0-3 dead end — decrease edge confidence

slide credit: Vaclav Hlavac

Torsten Sattler
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Crack Edges Patterns

* 0-0 isolated edge — decrease edge confidence
e 0-1 uncertain — weak increase, or no influence
* 0-2, 0-3 dead end — decrease edge confidence
* 1-1 continuation — strong positive influence on edge confidence

slide credit: Vaclav Hlavac

Torsten Sattler
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Crack Edges Patterns

* 0-0 isolated edge — decrease edge confidence
e 0-1 uncertain — weak increase, or no influence
* 0-2, 0-3 dead end — decrease edge confidence
* 1-1 continuation — strong positive influence on edge confidence

e 1-2, 1-3 continuation to border intersection — medium positive influence on
edge confidence

slide credit: Vaclav Hlavac

Torsten Sattler
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Crack Edges Patterns

0-0 -1 2—0 3-3

0-0 isolated edge — decrease edge confidence

0-1 uncertain — weak increase, or no influence

0-2, 0-3 dead end — decrease edge confidence

1-1 continuation — strong positive influence on edge confidence

1-2, 1-3 continuation to border intersection — medium positive influence on
edge confidence

o 2-2,2-3, 3-3 bridge between borders — not necessary for segmentation, no
iInfluence on edge confidence

slide credit: Vaclav Hlavac

Torsten Sattler
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Edge Relaxation

;I Evaluate confidence Cl(e) for each crack edge ¢

, Set k =1

,:Repeaf

| Detfermine type of edge based on confidences c*(e) in neighborhood

Compute confidence c*1(e) of e based on type and cX(e)
Evaluate model on all 2D-2D and 2D-3D matches
K=K+ 1

Stop if all edge confidences have converged to O or 1

P

slide credit: Vaclav Hlavac
o5
e
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Edge Relaxation

d |

borders after 10 iterations

slide credit: Vaclav Hlavac
o5
e
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49



Edge Relaxation

borders after 100 iterations
thinned

slide credit: Vaclav Hlavac
e Bs
e
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overlaid over original
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Region Growing

Repeat until no more seeds
Select set K of seed pixels to start new region R

Repeat
For each pixel p € K:

Add neighbor g to K and R if similar enough to
pixels in R

remove p from K

slide credit: Vaclav Hlavac
o5
e
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Region Growing

Repeat until no more seeds
Select set K of seed pixels to start new region R

Repeat
For each pixel p € K:

Add neighbor g to K and R if similar enough to
pixels in R

remove p from K

slide credit: Vaclav Hlavac
o5
e
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Region Growing

Repeat until no more seeds
' Select set K of seed pixels to start new region R

Repeat
For each pixel p € K:

Add neighbor g to K and R if similar enough to
pixels in R

remove p from K

slide credit: Vaclav Hlavac
o5
e
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OF INFORMATICS

CyBERNETICS. Torsten Sattler
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Superpixels

* Group together similar-looking pixels
* Increases efficiency of further processing: use superpixels rather than pixels

VaURRL JIAVARUE:
P el b )

[Ren & Malik, Learning a classification model for segmentation, ICCV 2003]

slide credit: Vaclav Hlavac
e Bs
e
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DIScussIon

 Edge-based segmentation and region growing are examples for bottom-up
approaches to segmentation:

* Obtain initial segmentation, then process it (merge close-by segments to
semantically meaningful regions, etc.)

* Risk: early mistakes cannot be recovered (premature hard decisions)

slide credit: Vaclav Hlavac

Torsten Sattler
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DIScussIon

 Edge-based segmentation and region growing are examples for bottom-up
approaches to segmentation:

* Obtain initial segmentation, then process it (merge close-by segments to
semantically meaningful regions, etc.)

* Risk: early mistakes cannot be recovered (premature hard decisions)

* Top-down segmentation: start with larger regions and split them into
semantically meaningful parts

slide credit: Vaclav Hlavac

Torsten Sattler
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DIScussIon

 Edge-based segmentation and region growing are examples for bottom-up
approaches to segmentation:

* Obtain initial segmentation, then process it (merge close-by segments to
semantically meaningful regions, etc.)

* Risk: early mistakes cannot be recovered (premature hard decisions)

* Top-down segmentation: start with larger regions and split them into
semantically meaningful parts

 Bottom-up and top-down approaches can work together, are not mutually
exclusive

slide credit: Vaclav Hlavac

Torsten Sattler
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| ecture Overview

stmple § | . : : :
newristic | © A simple approach to segmentation: (intensity) thresholding
| » Segmentation based on spatial coherence: edge-based
i  segmentation, region growing
e Segmentation as a clustering problem: k-means clustering,
{  mean-shift clustering
f' * Segmentation as a statistical (unsupervised) learning
{  problem: expectation maximization (EM) algorithm
complex § _ Next lecture: graph-based segmentation, supervised
principled ¥ Jearning with neural networks (if time and interest)

slide credit: Vaclav Hlavac

Torsten Sattler
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Segmentation As Clustering

Image, courtesy Ondrej Drbohlav

Goal: cluster pixels into regions based on spatial and
appearance similarity

slide credit: Vaclav Hlavac

Torsten Sattler
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Thresholding As Clustering

Goal: find clusters of pixels that belong together based on pixel intensities

Lwtewsitg

slide credit: Bastian Leibe

Torsten Sattler 56



Thresholding As Clustering

Goal: find clusters of pixels that belong together based on pixel intensities

Lwtewsitg

slide credit: Bastian Leibe
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Thresholding As Clustering

Goal: find clusters of pixels that belong together based on pixel intensities

O POO—0-00d POOOC : :
intensity

Represent clusters by “centers” assign pixel to cluster of nearest center

slide credit: Bastian Leibe

Torsten Sattler 56



k-Means Clustering

e Chicken-and-egg problem:

* Given cluster membership, we can compute cluster centers (e.g., as mean)

m
< — ﬂ - -

slide credit: Bastian Leibe

Torsten Sattler
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k-Means Clustering

e Chicken-and-egg problem:

* Given cluster membership, we can compute cluster centers (e.g., as mean)

T
p /e—- — \g\

slide credit: Bastian Leibe

Torsten Sattler
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k-Means Clustering

e Chicken-and-egg problem:
* Given cluster membership, we can compute cluster centers (e.g., as mean)

e e —

> = =

e Given cluster centers, we can compute cluster membership (find nearest
cluster center)

—QOD—GTEO——CD—

slide credit: Bastian Leibe

Torsten Sattler
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k-Means Clustering

e Chicken-and-egg problem:
* Given cluster membership, we can compute cluster centers (e.g., as mean)

e e

_ = =

e Given cluster centers, we can compute cluster membership (find nearest
cluster center)

slide credit: Bastian Leibe

Torsten Sattler
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k-Means Clustering

e Chicken-and-egg problem:
* Given cluster membership, we can compute cluster centers (e.g., as mean)

e e ——

et =T

e Given cluster centers, we can compute cluster membership (find nearest
cluster center)

* k-means clustering: alternate between computing cluster membership and
computing cluster centers

slide credit: Bastian Leibe

Torsten Sattler
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k-Means Clustering / Lloyd's Algorithm

i Randomly initialize k cluster centers W
Repeat until assignments / centers do not change: | @ ® o
| Assign each point to the closest center ' ® ©
Recompute centers as mean of all points assigned to]
centers ”
[Lloyd, Least square quantization in PCM'’s, Bell Telephone Laboratories Paper 1957]
[Lloyd, Least squares quantization in PCM, Spec. issue on quantiz., IEEE Trans. Inform. Theory, 28:129-137, 1982]
/@é roRoTIS AN Torsten Sattler 58
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k-Means Clustering / Lloyd's Algorithm

I Randomly initialize k cluster centers
Repeat until assignments / centers do not change: | @ ® ©
Assign each point to the closest center ® © O
Recompute centers as mean of all points assigned to]
centers “
[Lloyd, Least square quantization in PCM'’s, Bell Telephone Laboratories Paper 1957]
[Lloyd, Least squares quantization in PCM, Spec. issue on quantiz., IEEE Trans. Inform. Theory, 28:129-137, 1982]
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k-Means Clustering / Lloyd's Algorithm

| Randomly initialize k cluster centers
Repeat until assignments / centers do not change: | @ ® o
Assign each point to the closest center ® © O
Recompute centers as mean of all points assigned to] ¥
centers :
[Lloyd, Least square quantization in PCM'’s, Bell Telephone Laboratories Paper 1957]
[Lloyd, Least squares quantization in PCM, Spec. issue on quantiz., IEEE Trans. Inform. Theory, 28:129-137, 1982]
/@é roRoTIS AN Torsten Sattler 60
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k-Means Clustering / Lloyd's Algorithm

_ ®

| Randomly initialize k cluster centers

Repeat until assignments / centers do not change: | ® ® ®
Assign each point to the closest center | ® ©

Recompute centers as mean of all points assigned fo
centers &

PSSP U, LS VOSSN SR LA WYV OO LS VO U SIS NS S, S SRR LAY YV OO LIRS VRSN SV SN SRR LAY CYV PSS SIS, GUE- LN VOGN S P SI G SIS, GO LN JOW S T SES CRE LR SV VS G S SEr, GOk U VSN T PSSR

[Lloyd, Least square quantization in PCM'’s, Bell Telephone Laboratories Paper 1957]
[Lloyd, Least squares quantization in PCM, Spec. issue on quantiz., IEEE Trans. Inform. Theory, 28:129-137, 1982]
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k-Means Clustering / Lloyd's Algorithm

| Randomly initialize k cluster centers
Repeat until assignments / centers do not change: | @

Assign each point to the closest center

Recompute centers as mean of all points assigned fo

BB SISV TR RS TSN SIS -SSR SR RS ST AR VDN SN S RS ST VBN SNSRI W RS TSNS PN SSRGS ST S PN SIS S R ST - e

[Lloyd, Least square quantization in PCM'’s, Bell Telephone Laboratories Paper 1957]
[Lloyd, Least squares quantization in PCM, Spec. issue on quantiz., IEEE Trans. Inform. Theory, 28:129-137, 1982]
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k-Means Clustering / Lloyd's Algorithm

| Randomly initialize k cluster centers
Repeat until assignments / centers do not change:

Assign each point to the closest center

Recompute centers as mean of all points assigned fo
centers &

PSSP U, LS VOSSN SR LA WYV OO LS VO U SIS NS S, S SRR LAY YV OO LIRS VRSN SV SN SRR LAY CYV PSS SIS, GUE- LN VOGN S P SI G SIS, GO LN JOW S T SES CRE LR SV VS G S SEr, GOk U VSN T PSSR

[Lloyd, Least square quantization in PCM'’s, Bell Telephone Laboratories Paper 1957]
[Lloyd, Least squares quantization in PCM, Spec. issue on quantiz., IEEE Trans. Inform. Theory, 28:129-137, 1982]
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k-Means Clustering / Lloyd's Algorithm

| Randomly initialize k cluster centers
Repeat until assignments / centers do not change:

Assign each point to the closest center

Recompute centers as mean of all points assigned fo

BB SISV TR RS TSN SIS -SSR SR RS ST AR VDN SN S RS ST VBN SNSRI W RS TSNS PN SSRGS ST S PN SIS S R ST - e

[Lloyd, Least square quantization in PCM'’s, Bell Telephone Laboratories Paper 1957]
[Lloyd, Least squares quantization in PCM, Spec. issue on quantiz., IEEE Trans. Inform. Theory, 28:129-137, 1982]
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k-Means Clustering / Lloyd's Algorithm

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler 65



k-Means Clustering / Lloyd's Algorithm

* Does k-means clustering converge?

slide credit: Vaclav Hlavac, Bastian Leibe
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k-Means Clustering / Lloyd's Algorithm

* Does k-means clustering converge?
 k-means cluster optimizes the cost:

Z z lp = ¢’

clusters i points p In cluster

slide credit: Vaclav Hlavac, Bastian Leibe
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k-Means Clustering / Lloyd's Algorithm

* Does k-means clustering converge?
 k-means cluster optimizes the cost:

Z z lp = ¢’

clusters i points p In cluster
* Updating cluster centers via the mean reduces cost for same assignments

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler 65



k-Means Clustering / Lloyd's Algorithm

* Does k-means clustering converge?
 k-means cluster optimizes the cost:
2
Z z P — ¢l
clusters i points p In cluster

* Updating cluster centers via the mean reduces cost for same assignments
 Updating an assignment reduces cost as well

slide credit: Vaclav Hlavac, Bastian Leibe
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k-Means Clustering / Lloyd's Algorithm

* Does k-means clustering converge?
 k-means cluster optimizes the cost:
2
Z z P — ¢l
clusters i points p In cluster

* Updating cluster centers via the mean reduces cost for same assignments
 Updating an assignment reduces cost as well
* Will thus converge to some local minimum

slide credit: Vaclav Hlavac, Bastian Leibe
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k-Means Clustering / Lloyd's Algorithm

* Does k-means clustering converge?
 k-means cluster optimizes the cost:
2
Z z P — ¢l
clusters i points p In cluster

* Updating cluster centers via the mean reduces cost for same assignments
 Updating an assignment reduces cost as well

* Will thus converge to some local minimum

* |n practice: stop algorithm if cost change is too small

slide credit: Vaclav Hlavac, Bastian Leibe
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k-Means Clustering / Lloyd's Algorithm

* Does k-means clustering converge?
 k-means cluster optimizes the cost:
2
Z z P — ¢l
clusters i points p In cluster

* Updating cluster centers via the mean reduces cost for same assignments
 Updating an assignment reduces cost as well

* Will thus converge to some local minimum

* |n practice: stop algorithm if cost change is too small

o Convergence can be Superpolynomial ) (2\/5) [Arthur, Vassilvitskii, How Slow is the k-means

Method”? Proceedings of the 2006 Symposium on Computational Geometry]

slide credit: Vaclav Hlavac, Bastian Leibe
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k-Means Clustering / Lloyd's Algorithm

* Does k-means clustering converge?
 k-means cluster optimizes the cost:

Z z lp = ¢’

clusters i points p In cluster

* Updating cluster centers via the mean reduces cost for same assignments
 Updating an assignment reduces cost as well

* Will thus converge to some local minimum

* |n practice: stop algorithm if cost change is too small

o Convergence can be Superpolynomial ) (2\/5) [Arthur, Vassilvitskii, How Slow is the k-means

Method”? Proceedings of the 2006 Symposium on Computational Geometry]

e Finding global optimum is NP-hard even for k = 2

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler 65



K-Means++

e Can we avoid arbitrarily bad local minima?

slide credit: Bastian Leibe, Steve Seitz
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http://theory.stanford.edu/~sergei/slides/BATS-Means.pdf

K-Means++

e Can we avoid arbitrarily bad local minima?

 k-means++ Initialization:
e Randomly choose first center

» Repeat until kK centers chosen: randomly choose data point with probability
proportional to distance to closest cluster center

slide credit: Bastian Leibe, Steve Seitz

Torsten Sattler
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K-Means++

e Can we avoid arbitrarily bad local minima?

 k-means++ Initialization:
e Randomly choose first center

» Repeat until kK centers chosen: randomly choose data point with probability
proportional to distance to closest cluster center

* [ntuition: other clusters likely to be “far" away from existing ones

slide credit: Bastian Leibe, Steve Seitz

Torsten Sattler
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K-Means++

e Can we avoid arbitrarily bad local minima?

 k-means++ Initialization:
e Randomly choose first center

» Repeat until kK centers chosen: randomly choose data point with probability
proportional to distance to closest cluster center

* [ntuition: other clusters likely to be “far" away from existing ones

 Randomization to reduce influence of outliers (see later slide)

slide credit: Bastian Leibe, Steve Seitz

Torsten Sattler
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K-Means++

e Can we avoid arbitrarily bad local minima?

 k-means++ Initialization:
e Randomly choose first center

» Repeat until kK centers chosen: randomly choose data point with probability
proportional to distance to closest cluster center

* [ntuition: other clusters likely to be “far" away from existing ones

 Randomization to reduce influence of outliers (see later slide)

o Arthur & Vassilvitskii 2007: Expected error: ®(log k) - optimum

slide credit: Bastian Leibe, Steve Seitz

Torsten Sattler
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img as col = double(im(:))
cluster membs = kmeans(img as col, K);

labelim = zeros(size(im)):;
for i=1l:k
inds = find(cluster membs==i) ;

meanval = mean(img as column(inds)) ;
labelim(inds) = meanval;
end

slide credit: Bastian Leibe

CZECH INSTITUTE
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Image, courtesy Ondoej Drbohlav

» Clustering into k = 2 regions based on absolute values of 1st derivative

('81(:1:,3;)', oI (x,y) )

ox

slide credit: Vaclav Hlavac
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Accounting For Spatial Coherence

* Clustering based on image intensities, color, texture similarity, etc. does not
take spatial coherence into account

Image Intensity-based clusters  Color-based clusters

slide credit: Bastian Leibe. Svetlana Lazebnik image source: D. Forsyth, J. Ponce, Computer Vision - A Modern Approach, 2nd edition, Pearson, 2011
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Accounting For Spatial Coherence

* Clustering based on image intensities, color, texture similarity, etc. does not
take spatial coherence into account

 Cluster based on, e.g., color, and pixel position: (v, g, b, X, y)

slide credit: Bastian Leibe. Svetlana |L.azebnik image source: D. Forsyth, J. Ponce, Computer Vision - A Modern Approach, 2nd edition, Pearson, 2011
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k-Means Clustering - Discussion

e Pros:

 Simple to implement, fast to compute, many
good implementations available (Matlab,
Python, ...)

* Converges to local minimum

slide credit: Vaclav Hlavac, Bastian Leibe, Kristen Grauman
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k-Means Clustering - Discussion

e Pros:

 Simple to implement, fast to compute, many
good implementations available (Matlab,
Python, ...)

* Converges to local minimum

e Cons:

» How to choose good value for k?

e Sensitive to outliers (randomization can help)
e Sensitive to Initialization

e (Clusters are spherical

* Mean needs to be defined

slide credit: Vaclav Hlavac, Bastian Leibe, Kristen Grauman

Torsten Sattler
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k-Means Clustering - Discussion

* Pros:

» Simple to implement, fast to compute, many C N
good implementations available (Matlab, e’ "o¢ —
Python, ...) 1 (A): Und

* Converges to local minimum -

Cons: U s
e Cons:

1

» How to choose good value for k?

e Sensitive to outliers (randomization can help)
e Sensitive to Initialization

e (Clusters are spherical

* Mean needs to be defined

slide credit: Vaclav Hlavac, Bastian Leibe, Kristen Grauman
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k-Means Clustering - Discussion

* Pros:

e Simple to implement, fast to compute, many e N
good implementations available (Matlab, A — —
Python, ...) [l Widodinkils chasters

* Converges to local minimum - <

;. .
e Cons: I :

» How to choose good value for k? oo

e Sensitive to outliers (randomization can help)

e Sensitive to initialization g@,?ééi |

» Clusters are spherical o 8?%@ £

* Mean needs to be defined @% §°

slide credit: Vaclav Hlavac, Bastian Leibe, Kristen Grauman 1..\: ['wo natural clusters ! (B): k-means clusters
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Mean Shift Clustering
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e How many modes (= cluster centers) are there?

slide credit: Steve Seitz, Bastian Leibe
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Mean Shift Clustering
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e How many modes (= cluster centers) are there?

slide credit: Steve Seitz, Bastian Leibe
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Mean Shift Clustering
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e How many modes (= cluster centers) are there?

slide credit: Steve Seitz, Bastian Leibe
S

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND

CYBERNETICS Torsten Sattler

CTU IN PRAGUE

W



—

Mean Shift Clustering
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e How many modes (= cluster centers) are there?
* How to detect automatically?

slide credit: Steve Seitz, Bastian Leibe
fe

CZECH INSTITUTE
OF INFORMATICS

CyBERNETICS. Torsten Sattler

CTU IN PRAGUE

W



Mean Shift Clustering

* Modes = local maxima of density of given distribution

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler

/3



Mean Shift Clustering

* Modes = local maxima of density of given distribution
 Assumption: density increases towards the modes
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Mean Shift Clustering

* Modes = local maxima of density of given distribution
 Assumption: density increases towards the modes

e Estimation of the density gradient [Fukunaga K.: Introduction to Statistical Pattern Recognition,
Academic Press, New York, 1972].

slide credit: Vaclav Hlavac, Bastian Leibe
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Mean Shift Clustering

* Modes = local maxima of density of given distribution
 Assumption: density increases towards the modes

e Estimation of the density gradient [Fukunaga K.: Introduction to Statistical Pattern Recognition,
Academic Press, New York, 1972].

e Sample mean of local samples points in the direction of higher density,
provides estimate of the gradient

slide credit: Vaclav Hlavac, Bastian Leibe
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Mean Shift Clustering

* Modes = local maxima of density of given distribution
 Assumption: density increases towards the modes

e Estimation of the density gradient [Fukunaga K.: Introduction to Statistical Pattern Recognition,
Academic Press, New York, 1972].

e Sample mean of local samples points in the direction of higher density,
provides estimate of the gradient

* Mean shift vector m for point p:

m = Z w; (pi —p), w;=dist(p,p;)

1Ewindow

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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Mean Shift Algorithm

@ Region of
. ® o { interest J
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Mean Shift Algorithm

Region of J
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Center of
mass

@ 4 o Mean Shift |
P _ vector
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slide credit: Y. Ukrainitz & B. Sarel
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Mean Shift Algorithm
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Mean Shift Algorithm
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® mass
)
& &
v
9
)
9
9
slide credit: Y. Ukrainitz & B. Sarel
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Mean Shift Clustering

 Clusters: all data points in attraction basin of mode
* Attraction basin: regions where mean shift leads to same mode

Torsten Sattler

81



Mean Shift Segmentation

* Extract features (colors, intensities, .
gradients, etc.) Lo T

e Initialize search windows at pixel positions / " T 0 e
uniformly distributed over image . i}

* Run mean shift for each window

* Merge windows that end up on the same -
“peak” or mode g

slide credit: Vaclav Hlavac, Bastian Leibe
S
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Examples

L "

[D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002]

slide credit: Vaclav Hlavac, Bastian Leibe, Svetlana Lazebnik
fe
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Examples

[D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002]

slide credit: Vaclav Hlavac, Bastian Leibe, Svetlana Lazebnik
S
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Examples
&

—

A

V.

[D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002]

slide credit: Vaclav Hlavac, Bastian Leibe, Svetlana Lazebnik
S
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Mean Shift Clustering - Discussion

* Pros:
* Model-free, does not assume any prior shape (spherical, elliptical, etc.)
e Single parameter with physical meaning (window size h)
* No need to specify number of modes, finds variable number of modes
* Robust to outliers

slide credit: Vaclav Hlavac, Bastian Leibe, Svetlana Lazebnik
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Mean Shift Clustering - Discussion

e Pros:

Model-free, does not assume any prior shape (spherical, elliptical, etc.)
Single parameter with physical meaning (window size h)

No need to specify number of modes, finds variable number of modes
Robust to outliers

e Cons:

Sensitive to window size h

Selecting right window size h not trivial

Computationally (relatively) expensive

Does not scale well with respect to feature space dimension

slide credit: Vaclav Hlavac, Bastian Leibe, Svetlana Lazebnik

Torsten Sattler
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| ecture Overview

stmple § | . : : :
newristic | © A simple approach to segmentation: (intensity) thresholding
| » Segmentation based on spatial coherence: edge-based
i  segmentation, region growing
* Segmentation as a clustering problem: k-means clustering,
{  mean-shift clustering
f' e Segmentation as a statistical (unsupervised) learning
|  problem: expectation maximization (EM) algorithm
complex § _ Next lecture: graph-based segmentation, supervised
principled ¥ Jearning with neural networks (if time and interest)

slide credit: Vaclav Hlavac

Torsten Sattler
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A Statistical Learning Perspective on Clustering

e Basic questions of practical relevance:
 \What is the shape of each cluster?
 What is the probability a point p belongs to cluster ¢

slide credit: Bastian Leibe
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A Statistical Learning Perspective on Clustering

e Basic questions of practical relevance:

 \What is the shape of each cluster?

 What is the probability a point p belongs to cluster ¢
* k-means clustering cannot answer these questions

slide credit: Bastian Leibe
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A Statistical Learning Perspective on Clustering

e Basic questions of practical relevance:

 \What is the shape of each cluster?

 What is the probability a point p belongs to cluster ¢
* k-means clustering cannot answer these questions

e Statistical approach:

 There is a generative model: function relating observations x € X and their
hidden state (class label) y € Y

» Described via the joint probability measure p(x, y | ®) defined by

parameters ®
e \Want to learn the parameters from data

slide credit: Bastian Leibe

Torsten Sattler 88



Supervised Learning

» If we have p(x, y|®), we can define classifier / decision function
y = q(x| ©) = argmax p(x, y| ©)

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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Supervised Learning

» If we have p(x, y|®), we can define classifier / decision function
y = q(x| ©) = argmax p(x, y| ©)

 Supervised learning: given labelled training data ((x, y;), ..., (x,, V.))
e Examples: random forests, deep neural networks

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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Supervised Learning

» If we have p(x, y|®), we can define classifier / decision function
y = q(x| ©) = argmax p(x, y| ©)

 Supervised learning: given labelled training data ((x, y;), ..., (x,, V.))
e Examples: random forests, deep neural networks
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Supervised Learning

» If we have p(x, y|®), we can define classifier / decision function
y = q(x| ©) = argmax p(x, y| ©)

 Supervised learning: given labelled training data ((x, y;), ..., (x,, V.))
e Examples: random forests, deep neural networks

Xi yl,

Vi
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Supervised Learning

» If we have p(x, y|®), we can define classifier / decision function
y = q(x| ©) = argmax p(x, y| ©)

 Supervised learning: given labelled training data ((x, y;), ..., (x,, V.))
e Examples: random forests, deep neural networks

Xi yl,
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Supervised Learning

» If we have p(x, y|®), we can define classifier / decision function
y = q(x| ©) = argmax p(x, y| ©)

 Supervised learning: given labelled training data ((x, y;), ..., (x,, V.))
e Examples: random forests, deep neural networks

Xi yl,

©
—

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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Unsupervised Learning

» If we have p(x, y|®), we can define classifier / decision function

y = g(x|©) = argmax p(x,y| ©)

» Unsupervised learning: given unlabelled training data (x,,

slide credit: Vaclav Hlavac

Torsten Sattler
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Unsupervised Learning

» If we have p(x, y|®), we can define classifier / decision function
y = q(x| ©) = argmax p(x, y| ©)

» Unsupervised learning: given unlabelled training data (x, ..., x

cor X,
A q(x|O) Y;

slide credit: Vaclav Hlavac

Torsten Sattler
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Unsupervised Learning

» If we have p(x, y|®), we can define classifier / decision function
y = q(x| ©) = argmax p(x, y| ©)

» Unsupervised learning: given unlabelled training data (x;, ..., x,

slide credit: Vaclav Hlavac

Torsten Sattler
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Unsupervised Learning

» Unsupervised learning: given unlabelled training data (x;,

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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Unsupervised Learning

» Unsupervised learning: given unlabelled training data (x, ..., x,)

» Chicken-and-egg problem: if we have ®, we can compute y = g(x | ®); if
we have y, we can compute ®

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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Unsupervised Learning

» Unsupervised learning: given unlabelled training data (x, ..., x,)

» Chicken-and-egg problem: if we have ®, we can compute y = g(x | ®); if
we have y, we can compute ®
e Sounds familiar?

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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Mixture of Gaussians

* Mixture of Gaussians is one generative model;
« K Gaussian blobs with means H;, COV. matrices Zj, dimensionality D

|
——(x = N>y — .
PRI €XP( 2(36 1) E(x ﬂ,))

» Gaussian j selected with probability 7;

p(x| Q) =

e Likelihood of observing data point x is weighted mixture of Gaussians:

K
p(x|©) =Y zp(x|©) © = (7,41, %, ... 7. iy, )
j=1

slide credit: Bastian Leibe

Torsten Sattler
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Expectation Maximization (EM) Algorithm

» Goal: find parameters ® that maximize likelihood function:

p(data|®) = [ [ p(x;| ©)
=1

slide credit: Bastian Leibe, Steve Seitz

Torsten Sattler 93



Expectation Maximization (EM) Algorithm

» Goal: find parameters ® that maximize likelihood function:

p(data|®) = [ [ p(x;| ©)
=1

e Expectation Maximization (EM) approach:

slide credit: Bastian Leibe, Steve Seitz

Torsten Sattler 03



Expectation Maximization (EM) Algorithm

» Goal: find parameters ® that maximize likelihood function:

p(data|®) = [ [ p(x;| ©)
=1

e Expectation Maximization (EM) approach:
» Obtain initial estimate ®" for ®

slide credit: Bastian Leibe, Steve Seitz

Torsten Sattler 03



Expectation Maximization (EM) Algorithm

» Goal: find parameters ® that maximize likelihood function:

p(data|®) = [ [ p(x;| ©)
=1

e Expectation Maximization (EM) approach:

» Obtain initial estimate ®" for ®
 Repeat:

slide credit: Bastian Leibe, Steve Seitz

Torsten Sattler
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Expectation Maximization (EM) Algorithm

» Goal: find parameters ® that maximize likelihood function:

p(data|®) = [ [ p(x;| ©)
=1

e Expectation Maximization (EM) approach:

» Obtain initial estimate ®" for ®
 Repeat:

e E-step: given O assign data points to Gaussians

slide credit: Bastian Leibe, Steve Seitz

Torsten Sattler
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Expectation Maximization (EM) Algorithm

» Goal: find parameters ® that maximize likelihood function:

p(data|®) = [ [ p(x;| ©)
=1

e Expectation Maximization (EM) approach:

« Obtain initial estimate ®" for ®
 Repeat:
e E-step: given O assign data points to Gaussians
 M-step: given assignments, estimate e+l by maximizing
likelihood function

slide credit: Bastian Leibe, Steve Seitz

Torsten Sattler
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Expectation Maximization (EM) Algorithm

o E-step: compute soft assignment of data points to mixture components:

i) = %
=1 ﬂk‘/’/ (xi ‘ His Zk)

slide credit: Bastian Leibe
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Expectation Maximization (EM) Algorithm

o E-step: compute soft assignment of data points to mixture components:

i) = =k
=1 ﬂk‘/’/ (xi ‘ His Zk)

o M-step: use soft assignments to re-estimate parameters G)j per component:
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Expectation Maximization (EM) Algorithm

o E-step: compute soft assignment of data points to mixture components:

i) = =k
=1 ﬂk‘/’/ (xi ‘ His Zk)

o M-step: use soft assignments to re-estimate parameters G)j per component:

n
N; = Z y/(x;) = soft number of points assigned to cluster j
i=1

slide credit: Bastian Leibe
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Expectation Maximization (EM) Algorithm

o E-step: compute soft assignment of data points to mixture components:

i) = =k
=1 ﬂk‘/’/ (xi ‘ His Zk)

o M-step: use soft assignments to re-estimate parameters G)j per component:

n
N; = Z y/(x;) = soft number of points assigned to cluster j
i=1

]Z'.new p—

s N;/n = probability of component j

slide credit: Bastian Leibe
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Expectation Maximization (EM) Algorithm

o E-step: compute soft assignment of data points to mixture components:

i) = =k
=1 ﬂk‘/’/ (xi ‘ His 2k)

o M-step: use soft assignments to re-estimate parameters G)j per component:

n
N; = Z y/(x;) = soft number of points assigned to cluster j
i=1

]Z'.new p—

s N;/n = probability of component j

n
new _ —
Hi~ = Z y(x;)x; = new cluster center

N.
J i=1

slide credit: Bastian Leibe

Torsten Sattler 94



Expectation Maximization (EM) Algorithm

o E-step: compute soft assignment of data points to mixture components:

i) = =k
=1 ﬂk‘/’/ (xi ‘ His 2k)

o M-step: use soft assignments to re-estimate parameters G)j per component:

n
N; = Z y/(x;) = soft number of points assigned to cluster j
i=1

ﬂjnew = Nj/n = probability of component j
1 n 1 n

,,t]new = Z y{(x;)x; = new cluster center ZJDeW =3 Z 7i(x)(x; — /,t]f‘eW)T(xi — /,tjf‘eW)
J i=1 J i=1

slide credit: Bastian Leibe

Torsten Sattler 94



K-Means as Expectation Maximization

 k-means clustering is a special case of EM algorithm

slide credit: Vaclav Hlavac
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K-Means as Expectation Maximization

 k-means clustering is a special case of EM algorithm
e (Gaussian mixture model with unit covariances
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K-Means as Expectation Maximization

 k-means clustering is a special case of EM algorithm
e (Gaussian mixture model with unit covariances

e E-step: hard assignments to component:

1 .
k; = argmax, p(x;| ©,) = argmax,, log (eXp (_E(Xi — ) (x; — M)) = argmin, |lx; — pll”
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K-Means as Expectation Maximization

 k-means clustering is a special case of EM algorithm
e (Gaussian mixture model with unit covariances

e E-step: hard assignments to component:
1 .
k; = argmax, p(x;| ©,) = argmax,, log (eXp (_E(Xi — ) (x; — M)) = argmin, |lx; — pll”

 M-step: update cluster centers ® = (y,, ..., ug):
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K-Means as Expectation Maximization

 k-means clustering is a special case of EM algorithm
e (Gaussian mixture model with unit covariances

e E-step: hard assignments to component:
1 .
k; = argmax,p(x;| ©,) = argmax,, log (eXp (_E(Xi — )" (% = M)) = argmin, ||x; — ull*
 M-step: update cluster centers ® = (y,, ..., ug):

©* = argmax,, ¥ log(p(x;| ©,)
=1
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K-Means as Expectation Maximization

 k-means clustering is a special case of EM algorithm
e (Gaussian mixture model with unit covariances

e E-step: hard assignments to component:
1 .
k; = argmax,p(x;| ©,) = argmax,, log (eXp (_E(Xi — )" (% = M)) = argmin, ||x; — ull*
 M-step: update cluster centers ® = (y,, ..., ug):

n n
O = argmax, ) log(p(x;|©) =argmin, > llx; = I
=1 =1
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K-Means as Expectation Maximization

 k-means clustering is a special case of EM algorithm
e (Gaussian mixture model with unit covariances

e E-step: hard assignments to component:
1 .
k; = argmax,p(x;| ©,) = argmax,, log (eXp (_E(Xi — )" (% = M)) = argmin, ||x; — ull*
 M-step: update cluster centers ® = (y,, ..., ug):

n n
O = argmax, ) log(p(x;|©) =argmin, > llx; = I
=1 =1

. 2 .
= argmin, Z |l x: — py ] ,-..argmin Z Hxi—//tKH2
{ilk=1) {ilk=K}

slide credit: Vaclav Hlavac
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K-Means as Expectation Maximization

 k-means clustering is a special case of EM algorithm
e (Gaussian mixture model with unit covariances

e E-step: hard assignments to component:
1 .
k; = argmax,p(x;| ©,) = argmax,, log (eXp (_E(Xi — )" (% = M)) = argmin, ||x; — ull*
 M-step: update cluster centers ® = (y,, ..., ug):

n n
O = argmax, ) log(p(x;|©) =argmin, > llx; = I
=1 =1

. ) : 2
= argmin, Z |l x: — py ] ,-..argmin Z | x; — pgl]
{ilk=1) {ilk=K}

1
=>,l/t= . ) ’xi’ ]=1,,K
! [{ilk;=J}1 Z

slide credit: Vaclav Hlavaé lilk=j}

Torsten Sattler 95




EM Algorithm for Segmentation

Original image

slide credit: Bastian Leibe image credit: Serge Belongie
i
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The EM Algorithm

* (General statistical approach for missing data / data with hidden states

slide credit: Vaclav Hlavac

Torsten Sattler
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* (General statistical approach for missing data / data with hidden states

 Can be used to obtain Maximum Likelihood Estimate (MLE) even if MLE
cannot be computed directly
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The EM Algorithm

* (General statistical approach for missing data / data with hidden states

 Can be used to obtain Maximum Likelihood Estimate (MLE) even if MLE
cannot be computed directly

e General concept:
» Marginalize over hidden states y € Y: p(x|©) =) p(x,y|©)

o Simplify estimation of p(x|®) by inferring hiddeyn states
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The EM Algorithm

* (General statistical approach for missing data / data with hidden states

 Can be used to obtain Maximum Likelihood Estimate (MLE) even if MLE
cannot be computed directly

e General concept:
» Marginalize over hidden states y € Y: p(x|©) =) p(x,y|©)

o Simplify estimation of p(x|®) by inferring hiddeyn states

* Guaranteed to converge as cost function decreases monotonically (proof via
special form of Jensen's inequality)
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The EM Algorithm

* (General statistical approach for missing data / data with hidden states

 Can be used to obtain Maximum Likelihood Estimate (MLE) even if MLE
cannot be computed directly

e General concept:
» Marginalize over hidden states y € Y: p(x|©) =) p(x,y|©)

o Simplify estimation of p(x|®) by inferring hiddeyn states
* Guaranteed to converge as cost function decreases monotonically (proof via
special form of Jensen's inequality)

* No general guarantees about global optimality, EM Is essentially gradient
ascent

slide credit: Vaclav Hlavac

Torsten Sattler 97



EM Algorithm Maximizes Lower Bound on Likelihood

o Starting from initial estimate @Y, iterate:

slide credit: Vaclav Hlavac
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EM Algorithm Maximizes Lower Bound on Likelihood

o Starting from initial estimate @Y, iterate:
e E-step: estimate lower bound of the likelihood function L(®) at point ®’

L(®©) = p(data|®) = | | p0x| Theta) = | | 3 p(xi.v1©)
i Loy

slide credit: Vaclav Hlavac
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EM Algorithm Maximizes Lower Bound on Likelihood

o Starting from initial estimate @Y, iterate:
e E-step: estimate lower bound of the likelihood function L(®) at point ®’

L(®) = p(data|®) = | | p(x;| Theta) = | | ). p(x.y1©)
i Ly
* M-step: estimate ©*! that maximizes lower bound
| L©)

the new estimate 2
4« (local maximum)

N the new estimate 1

v

®t+2 @1 | @)‘ @

slide credit: Vaclav Hlavac
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The EM Algorithm

* Pros:
* Probabillistic interpretation of data
e Soft assignments instead of hard assignments
 (Generative model: can predict new datapoint

slide credit: Bastian Leibe image credit: Serge Belongie
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The EM Algorithm

* Pros:
* Probabillistic interpretation of data
e Soft assignments instead of hard assignments
 (Generative model: can predict new datapoint

e Cons:.
e Local optimization will lead to local minima
* [nitialization is thus important (e.g., use k-means for initialization)

» Similar to k-means clustering: need estimate for K

* Need to choose proper generative mode|
 Numerical instabilities can be an issue

slide credit: Bastian Leibe image credit: Serge Belongie

Torsten Sattler 99



