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What Is Image Segmentation?
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Goal: segment image into (semantically) meaningful regions
slide credit: Václav Hlaváč, Bastian Leibe, Kristen Grauman, Svetlana Lazebnik

Image, courtesy Ondřej Drbohlav
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Example: Semantic Segmentation
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video link[Pohlen, Hermans, Mathias, Leibe, Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes, CVPR 2017]

https://www.youtube.com/watch?v=PNzQ4PNZSzc
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Example: Semantic Segmentation
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video link[Pohlen, Hermans, Mathias, Leibe, Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes, CVPR 2017]

https://www.youtube.com/watch?v=PNzQ4PNZSzc
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video link

https://www.youtube.com/watch?v=OOT3UIXZztE
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Example: Instance-Level Segmentation
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video link

https://www.youtube.com/watch?v=OOT3UIXZztE
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Example: Motion Capture
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images taken from Vicon website

https://www.vicon.com/resources/case-studies/a-simple-motion-capture-system-delivering-powerful-results/
https://www.vicon.com/about-us/what-is-motion-capture/
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Example: Foreground Background Segmentation
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[Yağız Aksoy, Tunç Ozan Aydın, Marc Pollefeys, Designing Effective Inter-Pixel Information Flow for Natural Image Matting, CVPR 2017]
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video link

https://www.youtube.com/watch?v=OOT3UIXZztE
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video link

https://www.youtube.com/watch?v=OOT3UIXZztE
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Image Segmentation Can Be Hard
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slide credit: Václav Hlaváč

Image, courtesy Ondřej Drbohlav

• Cannot use color to distinguish between border of cup and background 
• Need some semantic understanding of what a “cup” is
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Image Segmentation As Grouping

9

Goal: group pixels that belong together into regions
slide credit: Václav Hlaváč

Image, courtesy Ondřej Drbohlav



Torsten Sattler

Inspiration from Humans? - The Gestalt School
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slide credit: Václav Hlaváč, Bastian Leibe

• Grouping of elements is key to human visual perception 
• Founding publication by Max Wertheimer (born in Prague) in 1912 
• Gestalt theory was meant to be generally applicable, but main tenets 

almost exclusively derived from observations of visual perception 
• Psychologists showed that human visual systems seems predisposed to 

group elements
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Inspiration from Humans? - The Gestalt School
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slide credit: Václav Hlaváč, Bastian Leibe

image source: Wikipedia

• Gestalt: configuration of elements such 
that whole is greater than sum of parts 

• Properties / features derived from 
relationship between elements 

• https://en.wikipedia.org/wiki/
Gestalt_psychology 

https://en.wikipedia.org/wiki/Gestalt_psychology
https://en.wikipedia.org/wiki/Gestalt_psychology
https://en.wikipedia.org/wiki/Gestalt_psychology
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Gestalt Grouping Principles
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slide credit: Václav Hlaváč, Bastian Leibe image source:  D. Forsyth, J. Ponce,  Computer Vision - A Modern Approach, 2nd edition,  Pearson, 2011
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Continuity Through Occlusions
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slide credit: Bastian Leibe
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Continuity Through Occlusions

14

slide credit: Bastian Leibe
Shape explained by occlusions
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Continuity Through Occlusions
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image source:  D. Forsyth, J. Ponce,  Computer Vision - A Modern Approach, 2nd edition,  Pearson, 2011

What do 
you see?

slide credit: Václav Hlaváč, Bastian Leibe
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Continuity Through Occlusions
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image source:  D. Forsyth, J. Ponce,  Computer Vision - A Modern Approach, 2nd edition,  Pearson, 2011

What do 
you see?

slide credit: Václav Hlaváč, Bastian Leibe
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Grouping Can Be Very Hard
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What do 
you see?

slide credit: Václav Hlaváč, Bastian Leibe
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Grouping Can Be Very Hard
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What do 
you see?

slide credit: Václav Hlaváč, Bastian Leibe

How to teach 
Gestalt principles 

to a machine?
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Lecture Overview
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slide credit: Václav Hlaváč

• A simple approach to segmentation: (intensity) thresholding
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• Segmentation based on spatial coherence: edge-based 
segmentation, region growing

• Segmentation as a clustering problem: k-means clustering, 
mean-shift clustering

• Segmentation as a statistical (unsupervised) learning 
problem: expectation maximization (EM) algorithm

• Next lecture: graph-based segmentation, supervised 
learning with neural networks (if time and interest)
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Lecture Overview

18

slide credit: Václav Hlaváč

• A simple approach to segmentation: (intensity) thresholding

• Segmentation based on spatial coherence: edge-based 
segmentation, region growing

• Segmentation as a clustering problem: k-means clustering, 
mean-shift clustering

• Segmentation as a statistical (unsupervised) learning 
problem: expectation maximization (EM) algorithm

• Next lecture: graph-based segmentation, supervised 
learning with neural networks (if time and interest)

simple &  
heuristic

complex & 
principled
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Other Segmentation Approaches Not Covered
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slide credit: Václav Hlaváč

• Template matching: detect regions in image by comparing with 
templates, fitting structures in the image 

• Object detection based on templates 
• Parametric model detection, e.g., straight lines, circles, ellipses, …



Torsten Sattler

Other Segmentation Approaches Not Covered
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slide credit: Václav Hlaváč

• Template matching: detect regions in image by comparing with 
templates, fitting structures in the image 

• Object detection based on templates 
• Parametric model detection, e.g., straight lines, circles, ellipses, …

• Based on unusual phenomena: segmentation by detecting unusual 
structures 

• Camouflage detection based on unusual texture 
• Image compression: large regions as unusual occurrences that can be 

heavily compressed (e.g., regions of same color)
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A Few Words of Advice
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slide credit: Václav Hlaváč

• There is no general purpose segmentation algorithm for all cases
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slide credit: Václav Hlaváč

• There is no general purpose segmentation algorithm for all cases

• Algorithm to use depends on circumstances: 
• Lots of labelled training data → supervised learning with CNNs 
• Simple structure & large color differences → thresholding 
• Little to no training data → unsupervised learning via clustering
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A Few Words of Advice
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slide credit: Václav Hlaváč

• There is no general purpose segmentation algorithm for all cases

• Algorithm to use depends on circumstances: 
• Lots of labelled training data → supervised learning with CNNs 
• Simple structure & large color differences → thresholding 
• Little to no training data → unsupervised learning via clustering

• Use prior knowledge whenever available: 
• Knowledge about shape or color of an object 
• Priors on position of object or region in image (e.g., images centered on 

object) 
• Relation between objects or regions (e.g., car always on top of road)



Torsten Sattler

Not Covered: Feature Design
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slide credit: Václav Hlaváč

• We directly observe primary features: pixel intensities, colors, depth (range 
cameras, e.g., LiDAR, Kinect), temperature (thermal cameras)
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• We directly observe primary features: pixel intensities, colors, depth (range 
cameras, e.g., LiDAR, Kinect), temperature (thermal cameras)

• We want to identify regions in the input that belong together
• How do we compare pixels / structures / regions? Extract features from direct 

observations: 
• Primary features (typically not very robust, e.g., to illumination changes) 
• Secondary features: information extracted from observations, e.g., shape 

parameters, texture parameters, relations between regions, motion 
parameters in video, stereo disparity / depth, …
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Not Covered: Feature Design
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slide credit: Václav Hlaváč

• We directly observe primary features: pixel intensities, colors, depth (range 
cameras, e.g., LiDAR, Kinect), temperature (thermal cameras)

• We want to identify regions in the input that belong together
• How do we compare pixels / structures / regions? Extract features from direct 

observations: 
• Primary features (typically not very robust, e.g., to illumination changes) 
• Secondary features: information extracted from observations, e.g., shape 

parameters, texture parameters, relations between regions, motion 
parameters in video, stereo disparity / depth, …

• Choice of features is very important, but not covered here
• Modern choice: learn features from data → deep learning / machine learning
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Image Segmentation

22

slide credit: Václav Hlaváč

• Goal: compute complete segmentation of image 

• Subdivide the image  into S disjoint regions , , …, , i.e., ℐ R1 R2 Rs

ℐ =
S

⋃
i=1

Ri, Ri ∩ Rj = ∅, i ≠ j
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Image Segmentation
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slide credit: Václav Hlaváč

• Goal: compute complete segmentation of image 

• Subdivide the image  into S disjoint regions , , …, , i.e., ℐ R1 R2 Rs

• Simplest case: binary segmentation into foreground (objects) and 
background 

• Surprisingly often a valid assumption as we often do not care about 
background

ℐ =
S

⋃
i=1

Ri, Ri ∩ Rj = ∅, i ≠ j
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Image Segmentation via Thresholding

23

slide credit: Václav Hlaváč
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generate binary image  withb

g(i, j) = {1 if  f(i, j) ≥ T
0 if  f(i, j) < T
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Image Segmentation via Thresholding
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slide credit: Václav Hlaváč
simple background

distinctly 
colored objects

pixel  with intensity (i, j) f(i, j)

generate binary image  withb

g(i, j) = {1 if  f(i, j) ≥ T
0 if  f(i, j) < T

threshold
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Example
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slide credit: Václav Hlaváč
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Example
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slide credit: Václav Hlaváč

How to choose the threshold?
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Thresholding Choices
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slide credit: Václav Hlaváč

• Band thresholding: consider range  of intensitiesD

g(i, j) = {1 if  f(i, j) ∈ D
0 otherwise 
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• Band thresholding: consider range  of intensitiesD

g(i, j) = {1 if  f(i, j) ∈ D
0 otherwise 

• Locally adaptive thresholding: divide images into regions (e.g., regular grid) 
and find a threshold for each region
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slide credit: Václav Hlaváč

• Band thresholding: consider range  of intensitiesD

g(i, j) = {1 if  f(i, j) ∈ D
0 otherwise 

• Locally adaptive thresholding: divide images into regions (e.g., regular grid) 
and find a threshold for each region

• Multiple thresholds: use multiple thresholds for  classesS > 2

g(i, j) =
2 if  f(i, j) ≥ T2

1 if  T1 ≤ f(i, j) < T2

0 if  f(i, j) < T1
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Thresholding Choices
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slide credit: Václav Hlaváč

• Semi-thresholding: only segment out the background, let human / other 
algorithm deal with foreground

g(i, j) = {f(i, j) if  f(i, j) ≥ T
0 if  f(i, j) < T
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• Semi-thresholding: only segment out the background, let human / other 
algorithm deal with foreground

• p-tile thresholding: if object covers 1/p of image, find the corresponding 1/p 
of histogram (e.g., when we know size of printed characters)

g(i, j) = {f(i, j) if  f(i, j) ≥ T
0 if  f(i, j) < T
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Thresholding Choices
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slide credit: Václav Hlaváč

• Semi-thresholding: only segment out the background, let human / other 
algorithm deal with foreground

• p-tile thresholding: if object covers 1/p of image, find the corresponding 1/p 
of histogram (e.g., when we know size of printed characters)

• Automatic thresholding based on histograms: compute histogram of 
intensities, objects and background should correspond to distinct modes, find 
threshold(s) separating the modes

g(i, j) = {f(i, j) if  f(i, j) ≥ T
0 if  f(i, j) < T
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Automatic Thresholding Based On Histograms
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slide credit: Václav Hlaváč
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• How to handle noisy 
histograms?
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Automatic Thresholding Based On Histograms
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slide credit: Václav Hlaváč

• How to handle noisy 
histograms?

• How to find optimal 
threshold(s)?
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Smoothing Histograms
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slide credit: Václav Hlaváč

• Noise in observations (e.g., noisy pixel intensities) → noisy / ragged histograms
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• Noise in observations (e.g., noisy pixel intensities) → noisy / ragged histograms

• Leads to multiple local extrema, makes analysis harder
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• Noise in observations (e.g., noisy pixel intensities) → noisy / ragged histograms

• Leads to multiple local extrema, makes analysis harder

• Smooth histogram before further processing, e.g., using 1D sliding average 
filter:
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• Leads to multiple local extrema, makes analysis harder
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filter:

• Input histogram  over intensities h(i) i = 0,…, imax
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Smoothing Histograms
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slide credit: Václav Hlaváč

• Noise in observations (e.g., noisy pixel intensities) → noisy / ragged histograms

• Leads to multiple local extrema, makes analysis harder

• Smooth histogram before further processing, e.g., using 1D sliding average 
filter:

• Input histogram  over intensities h(i) i = 0,…, imax
• New histogram  after applying sliding average with window size h′ (i) 2K + 1

h(i) =
1

2K + 1

K

∑
j=−K

h(i + j), i = K, …, imax − K
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“Optimal” Thresholding Via Mixture of Gaussians 
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slide credit: Václav Hlaváč

foreground background
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foreground background

“optimal” 
threshold
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foreground background
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“Optimal” Thresholding Via Mixture of Gaussians 
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slide credit: Václav Hlaváč

foreground background

“optimal” 
threshold

foreground background

“optimal” 
threshold

Choose thresholds based on decision boundaries: 
p(foreground |x) > p(background |x)
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Fitting A Mixture of Gaussians 
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slide credit: Václav Hlaváč

• Input: observed histogram h(g)
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Fitting A Mixture of Gaussians 
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slide credit: Václav Hlaváč

• Input: observed histogram h(g)

• Estimate: approximate histogram  modeled by n Gaussianshmodel(g)

hmodel(g) =
n

∑
i=1

aie
− (g − μi)

2

2σ2
i
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slide credit: Václav Hlaváč

• Input: observed histogram h(g)

• Estimate: approximate histogram  modeled by n Gaussianshmodel(g)

hmodel(g) =
n

∑
i=1

aie
− (g − μi)

2

2σ2
i

• Fit by minimizing ∑
g∈G

(h(g) − hmodel(h))
2
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Fitting A Mixture of Gaussians 
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slide credit: Václav Hlaváč

• Input: observed histogram h(g)

• Estimate: approximate histogram  modeled by n Gaussianshmodel(g)

hmodel(g) =
n

∑
i=1

aie
− (g − μi)

2

2σ2
i

• Fit by minimizing

• See part on expectation maximization

∑
g∈G

(h(g) − hmodel(h))
2
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Example: Brain MRI Segmentation
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slide credit: Václav Hlaváč

• Input: NMR images 

• Classes: white matter, grey matter, celebrities-spinal fluid (CSF)

Courtesy: Milan Šonka, University of Iowa.
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Example: Brain MRI Segmentation
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slide credit: Václav Hlaváč

Courtesy: Milan Šonka, 
University of Iowa.
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Isn’t This Outdated?
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images taken from Vicon website

Depending on application, we can ensure that 
thresholding works well!

https://www.vicon.com/resources/case-studies/a-simple-motion-capture-system-delivering-powerful-results/
https://www.vicon.com/about-us/what-is-motion-capture/
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images from [Lianos, Schönberger, Pollefeys, Sattler, VSO: Visual Semantic Odometry]

Compute representations where thresholding works
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Isn’t This Outdated?
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images from [Lianos, Schönberger, Pollefeys, Sattler, VSO: Visual Semantic Odometry]

Compute representations where thresholding works
set of probabilities per pixel x

p(x = car) = …
p(x = building) = …
p(x = road) = …

…
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Isn’t This Outdated?

35

images from [Lianos, Schönberger, Pollefeys, Sattler, VSO: Visual Semantic Odometry]

Compute representations where thresholding works

result of thresholding on 
 p(x = car)

set of probabilities per pixel x
p(x = car) = …
p(x = building) = …
p(x = road) = …

…
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slide credit: Václav Hlaváč

• A simple approach to segmentation: (intensity) thresholding 

• Segmentation based on spatial coherence: edge-based 
segmentation, region growing 

• Segmentation as a clustering problem: k-means clustering, 
mean-shift clustering 

• Segmentation as a statistical (unsupervised) learning 
problem: expectation maximization (EM) algorithm 

• Next lecture: graph-based segmentation, supervised 
learning with neural networks (if time and interest)

simple &  
heuristic

complex & 
principled
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• Pro: very easy to implement

slide credit: Václav Hlaváč
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• Pro: very easy to implement

• Pro: very easy to parallelize

• Con: we are ignoring that we are looking for regions of pixels that belong 
together → ignoring spatial consistency

slide credit: Václav Hlaváč
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Thresholding Summarized

37

• Pro: very easy to implement

• Pro: very easy to parallelize

• Con: we are ignoring that we are looking for regions of pixels that belong 
together → ignoring spatial consistency

edges = region boundariesslide credit: Václav Hlaváč
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Edge-Based Image Segmentation

38

• Edgels: significant edges from edge detector (e.g., Canny)

slide credit: Václav Hlaváč
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• Edgels: significant edges from edge detector (e.g., Canny)
• Processing: link edges, followed by relaxation, voting, dynamic programming, 

etc. to obtain region boundaries

slide credit: Václav Hlaváč
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Edge-Based Image Segmentation

38

• Edgels: significant edges from edge detector (e.g., Canny)
• Processing: link edges, followed by relaxation, voting, dynamic programming, 

etc. to obtain region boundaries
• Leads to partial segmentation that requires post-processing, some regions 

might not be segmented at all
slide credit: Václav Hlaváč
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Edge-Based Image Segmentation
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slide credit: Václav Hlaváč
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Edge-Based Image Segmentation
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slide credit: Václav Hlaváč

How to get from edge(l)s to region boundaries?
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thick edges, multiple pixels wide
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Thresholding Edge Responses
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slide credit: Václav Hlaváč

How to get thin edges?

thick edges, multiple pixels wide
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• Compare pixel intensity to 
neighbors 

• Keep only local maxima
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• Keep only local maxima
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gradient 
direction 

(orthogonal to 
edge direction)

• Compare pixel intensity to 
neighbors 

• Keep only local maxima

local 
maximum
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slide credit: Václav Hlaváč

gradient 
direction 

(orthogonal to 
edge direction)

• Compare pixel intensity to 
neighbors 

• Keep only local maxima

not a local 
maximum

local 
maximum
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slide credit: Václav Hlaváč
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slide credit: Václav Hlaváč
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lots of noisy edges

Hysteresis:
• Start with edge pixel with edge 

score above higher threshold thigh
• Follow edge as long as pixels have 

edge score above lower threshold 
tlow
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slide credit: Václav Hlaváč

lots of noisy edges

Hysteresis:
• Start with edge pixel with edge 

score above higher threshold thigh
• Follow edge as long as pixels have 

edge score above lower threshold 
tlow

• Iterate until all pixels considered
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44

slide credit: Václav Hlaváč
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slide credit: Václav Hlaváč
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slide credit: Václav Hlaváč

No closed boundaries 
Parts missing

Edge Relaxation:
• Attempt to close gaps in post-processing
• Iteratively improve edge properties based 

on neighboring edges
• Instance of a general algorithm 

“relaxation labelling”
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Edge Relaxation For Crack Edges

46

slide credit: Václav Hlaváč

Example illustration here based on crack edges (Hanson, Rieseman, 1978)

neighboring 
edges

current 
edge
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slide credit: Václav Hlaváč

• 0-0 isolated edge → decrease edge confidence
• 0-1 uncertain → weak increase, or no influence
• 0-2, 0-3 dead end → decrease edge confidence
• 1-1 continuation → strong positive influence on edge confidence
• 1-2, 1-3 continuation to border intersection → medium positive influence on 

edge confidence
• 2-2, 2-3, 3-3 bridge between borders → not necessary for segmentation, no 

influence on edge confidence
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Edge Relaxation

48

slide credit: Václav Hlaváč

Evaluate confidence  for each crack edge 


Set k = 1


Repeat


Determine type of edge based on confidences  in neighborhood


Compute confidence  of  based on type and 


Evaluate model on all 2D-2D and 2D-3D matches


k = k + 1


Stop if all edge confidences have converged to 0 or 1

c1(e) e

ck(e)
ck+1(e) e ck(e)
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slide credit: Václav Hlaváč
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slide credit: Václav Hlaváč



Torsten Sattler

Region Growing

51

slide credit: Václav Hlaváč

Repeat until no more seeds


Select set  of seed pixels to start new region 


Repeat


For each pixel :


Add neighbor  to  and  if similar enough to 
pixels in 


remove  from 

K R

p ∈ K

q K R
R

p K
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Repeat until no more seeds


Select set  of seed pixels to start new region 


Repeat


For each pixel :


Add neighbor  to  and  if similar enough to 
pixels in 


remove  from 

K R

p ∈ K

q K R
R

p K
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Superpixels

52

slide credit: Václav Hlaváč

• Group together similar-looking pixels 
• Increases efficiency of further processing: use superpixels rather than pixels

[Ren & Malik, Learning a classification model for segmentation, ICCV 2003]
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slide credit: Václav Hlaváč

• Edge-based segmentation and region growing are examples for bottom-up 
approaches to segmentation: 

• Obtain initial segmentation, then process it (merge close-by segments to 
semantically meaningful regions, etc.) 

• Risk: early mistakes cannot be recovered (premature hard decisions)
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• Edge-based segmentation and region growing are examples for bottom-up 
approaches to segmentation: 

• Obtain initial segmentation, then process it (merge close-by segments to 
semantically meaningful regions, etc.) 

• Risk: early mistakes cannot be recovered (premature hard decisions)

• Top-down segmentation: start with larger regions and split them into 
semantically meaningful parts

• Bottom-up and top-down approaches can work together, are not mutually 
exclusive
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slide credit: Václav Hlaváč

• A simple approach to segmentation: (intensity) thresholding 

• Segmentation based on spatial coherence: edge-based 
segmentation, region growing 

• Segmentation as a clustering problem: k-means clustering, 
mean-shift clustering 

• Segmentation as a statistical (unsupervised) learning 
problem: expectation maximization (EM) algorithm 

• Next lecture: graph-based segmentation, supervised 
learning with neural networks (if time and interest)

simple &  
heuristic

complex & 
principled
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Segmentation As Clustering
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Goal: cluster pixels into regions based on spatial and 
appearance similarity

slide credit: Václav Hlaváč

Image, courtesy Ondřej Drbohlav



Torsten Sattler

Thresholding As Clustering

56

slide credit: Bastian Leibe

foreground

background

intensity

Goal: find clusters of pixels that belong together based on pixel intensities



Torsten Sattler

Thresholding As Clustering

56

slide credit: Bastian Leibe

foreground

background

intensity

Goal: find clusters of pixels that belong together based on pixel intensities



Torsten Sattler

Thresholding As Clustering

56

slide credit: Bastian Leibe

foreground

background

intensity

Goal: find clusters of pixels that belong together based on pixel intensities

Represent clusters by “centers” assign pixel to cluster of nearest center



Torsten Sattler

k-Means Clustering

57

slide credit: Bastian Leibe

• Chicken-and-egg problem:
• Given cluster membership, we can compute cluster centers (e.g., as mean)
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slide credit: Bastian Leibe

• Chicken-and-egg problem:
• Given cluster membership, we can compute cluster centers (e.g., as mean)

• Given cluster centers, we can compute cluster membership (find nearest 
cluster center)

• k-means clustering: alternate between computing cluster membership and 
computing cluster centers
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k-Means Clustering / Lloyd’s Algorithm

58

[Lloyd, Least square quantization in PCM’s, Bell Telephone Laboratories Paper 1957] 
[Lloyd, Least squares quantization in PCM, Spec. issue on quantiz., IEEE Trans. Inform. Theory, 28:129–137, 1982]

Randomly initialize  cluster centers


Repeat until assignments / centers do not change:


Assign each point to the closest center


Recompute centers as mean of all points assigned to 
centers

k
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[Lloyd, Least square quantization in PCM’s, Bell Telephone Laboratories Paper 1957] 
[Lloyd, Least squares quantization in PCM, Spec. issue on quantiz., IEEE Trans. Inform. Theory, 28:129–137, 1982]

Randomly initialize  cluster centers


Repeat until assignments / centers do not change:


Assign each point to the closest center


Recompute centers as mean of all points assigned to 
centers

k
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[Lloyd, Least square quantization in PCM’s, Bell Telephone Laboratories Paper 1957] 
[Lloyd, Least squares quantization in PCM, Spec. issue on quantiz., IEEE Trans. Inform. Theory, 28:129–137, 1982]

Randomly initialize  cluster centers


Repeat until assignments / centers do not change:


Assign each point to the closest center


Recompute centers as mean of all points assigned to 
centers

k
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[Lloyd, Least square quantization in PCM’s, Bell Telephone Laboratories Paper 1957] 
[Lloyd, Least squares quantization in PCM, Spec. issue on quantiz., IEEE Trans. Inform. Theory, 28:129–137, 1982]

Randomly initialize  cluster centers


Repeat until assignments / centers do not change:


Assign each point to the closest center


Recompute centers as mean of all points assigned to 
centers

k
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[Lloyd, Least square quantization in PCM’s, Bell Telephone Laboratories Paper 1957] 
[Lloyd, Least squares quantization in PCM, Spec. issue on quantiz., IEEE Trans. Inform. Theory, 28:129–137, 1982]

Randomly initialize  cluster centers


Repeat until assignments / centers do not change:


Assign each point to the closest center


Recompute centers as mean of all points assigned to 
centers

k
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[Lloyd, Least square quantization in PCM’s, Bell Telephone Laboratories Paper 1957] 
[Lloyd, Least squares quantization in PCM, Spec. issue on quantiz., IEEE Trans. Inform. Theory, 28:129–137, 1982]

Randomly initialize  cluster centers


Repeat until assignments / centers do not change:


Assign each point to the closest center


Recompute centers as mean of all points assigned to 
centers

k
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slide credit: Václav Hlaváč, Bastian Leibe
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• k-means cluster optimizes the cost:
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∑
clusters i

∑
points p in cluster i

∥p − ci∥2
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• k-means cluster optimizes the cost:

• Updating cluster centers via the mean reduces cost for same assignments
• Updating an assignment reduces cost as well
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• k-means cluster optimizes the cost:

• Updating cluster centers via the mean reduces cost for same assignments
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• Will thus converge to some local minimum
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• k-means cluster optimizes the cost:

• Updating cluster centers via the mean reduces cost for same assignments
• Updating an assignment reduces cost as well
• Will thus converge to some local minimum
• In practice: stop algorithm if cost change is too small
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• Does k-means clustering converge?
• k-means cluster optimizes the cost:

• Updating cluster centers via the mean reduces cost for same assignments
• Updating an assignment reduces cost as well
• Will thus converge to some local minimum
• In practice: stop algorithm if cost change is too small

• Convergence can be superpolynomial  [Arthur, Vassilvitskii, How Slow is the k-means 

Method? Proceedings of the 2006 Symposium on Computational Geometry]

𝒪 (2 2)

slide credit: Václav Hlaváč, Bastian Leibe
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• Does k-means clustering converge?
• k-means cluster optimizes the cost:

• Updating cluster centers via the mean reduces cost for same assignments
• Updating an assignment reduces cost as well
• Will thus converge to some local minimum
• In practice: stop algorithm if cost change is too small

• Convergence can be superpolynomial  [Arthur, Vassilvitskii, How Slow is the k-means 

Method? Proceedings of the 2006 Symposium on Computational Geometry]

𝒪 (2 2)
• Finding global optimum is NP-hard even for k = 2

slide credit: Václav Hlaváč, Bastian Leibe

∑
clusters i

∑
points p in cluster i

∥p − ci∥2
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• Can we avoid arbitrarily bad local minima?

slide credit: Bastian Leibe, Steve Seitz

http://theory.stanford.edu/~sergei/slides/BATS-Means.pdf
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• Can we avoid arbitrarily bad local minima?

• k-means++ initialization: 
• Randomly choose first center 
• Repeat until  centers chosen: randomly choose data point with probability 

proportional to distance to closest cluster center
k

• Intuition: other clusters likely to be “far" away from existing ones

• Randomization to reduce influence of outliers (see later slide)

• Arthur & Vassilvitskii 2007: Expected error: Θ(log k) ⋅ optimum

slide credit: Bastian Leibe, Steve Seitz

http://theory.stanford.edu/~sergei/slides/BATS-Means.pdf
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slide credit: Bastian Leibe
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slide credit: Václav Hlaváč

• Clustering into  regions based on absolute values of 1st derivative k = 2
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Accounting For Spatial Coherence
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• Clustering based on image intensities, color, texture similarity, etc. does not 
take spatial coherence into account

slide credit: Bastian Leibe, Svetlana Lazebnik image source:  D. Forsyth, J. Ponce,  Computer Vision - A Modern Approach, 2nd edition,  Pearson, 2011
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• Clustering based on image intensities, color, texture similarity, etc. does not 
take spatial coherence into account 

• Cluster based on, e.g., color, and pixel position: (r, g, b, x, y)

slide credit: Bastian Leibe, Svetlana Lazebnik image source:  D. Forsyth, J. Ponce,  Computer Vision - A Modern Approach, 2nd edition,  Pearson, 2011
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slide credit: Václav Hlaváč, Bastian Leibe, Kristen Grauman

• Pros: 
• Simple to implement, fast to compute, many 

good implementations available (Matlab, 
Python, …) 

• Converges to local minimum
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good implementations available (Matlab, 
Python, …) 

• Converges to local minimum
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• How to choose good value for ? 
• Sensitive to outliers (randomization can help) 
• Sensitive to initialization 
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• Mean needs to be defined

k
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• How many modes (= cluster centers) are there?



Torsten Sattler

Mean Shift Clustering

72

slide credit: Steve Seitz, Bastian Leibe

• How many modes (= cluster centers) are there?



Torsten Sattler

Mean Shift Clustering

72

slide credit: Steve Seitz, Bastian Leibe

• How many modes (= cluster centers) are there?



Torsten Sattler

Mean Shift Clustering

72

slide credit: Steve Seitz, Bastian Leibe

• How many modes (= cluster centers) are there?
• How to detect automatically?
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slide credit: Václav Hlaváč, Bastian Leibe

• Modes = local maxima of density of given distribution
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slide credit: Václav Hlaváč, Bastian Leibe

• Modes = local maxima of density of given distribution
• Assumption: density increases towards the modes
• Estimation of the density gradient [Fukunaga K.: Introduction to Statistical Pattern Recognition, 

Academic Press, New York, 1972]:
• Sample mean of local samples points in the direction of higher density, 

provides estimate of the gradient

• Mean shift vector  for point :m p
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74

slide credit: Y. Ukrainitz & B. Sarel
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slide credit: Y. Ukrainitz & B. Sarel
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slide credit: Y. Ukrainitz & B. Sarel
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slide credit: Y. Ukrainitz & B. Sarel
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slide credit: Y. Ukrainitz & B. Sarel
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slide credit: Y. Ukrainitz & B. Sarel
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slide credit: Y. Ukrainitz & B. Sarel



Torsten Sattler

Mean Shift Clustering
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slide credit: Bastian Leibe, Y. Ukrainitz & B. Sarel

• Clusters: all data points in attraction basin of mode 
• Attraction basin: regions where mean shift leads to same mode
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Mean Shift Segmentation

82

• Extract features (colors, intensities, 
gradients, etc.) 

• Initialize search windows at pixel positions / 
uniformly distributed over image 

• Run mean shift for each window 

• Merge windows that end up on the same 
“peak” or mode

slide credit: Václav Hlaváč, Bastian Leibe
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Examples
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slide credit: Václav Hlaváč, Bastian Leibe, Svetlana Lazebnik
[D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002]
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slide credit: Václav Hlaváč, Bastian Leibe, Svetlana Lazebnik
[D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002]
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slide credit: Václav Hlaváč, Bastian Leibe, Svetlana Lazebnik
[D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002]
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slide credit: Václav Hlaváč, Bastian Leibe, Svetlana Lazebnik

• Pros: 
• Model-free, does not assume any prior shape (spherical, elliptical, etc.) 
• Single parameter with physical meaning (window size h) 
• No need to specify number of modes, finds variable number of modes 
• Robust to outliers
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Mean Shift Clustering - Discussion

86

slide credit: Václav Hlaváč, Bastian Leibe, Svetlana Lazebnik

• Pros: 
• Model-free, does not assume any prior shape (spherical, elliptical, etc.) 
• Single parameter with physical meaning (window size h) 
• No need to specify number of modes, finds variable number of modes 
• Robust to outliers

• Cons: 
• Sensitive to window size h 
• Selecting right window size h not trivial 
• Computationally (relatively) expensive 
• Does not scale well with respect to feature space dimension
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Lecture Overview
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slide credit: Václav Hlaváč

• A simple approach to segmentation: (intensity) thresholding 

• Segmentation based on spatial coherence: edge-based 
segmentation, region growing 

• Segmentation as a clustering problem: k-means clustering, 
mean-shift clustering 

• Segmentation as a statistical (unsupervised) learning 
problem: expectation maximization (EM) algorithm 

• Next lecture: graph-based segmentation, supervised 
learning with neural networks (if time and interest)

simple &  
heuristic

complex & 
principled
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slide credit: Bastian Leibe

• Basic questions of practical relevance: 
• What is the shape of each cluster? 
• What is the probability a point p belongs to cluster c?
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slide credit: Bastian Leibe

• Basic questions of practical relevance: 
• What is the shape of each cluster? 
• What is the probability a point p belongs to cluster c?

• k-means clustering cannot answer these questions

• Statistical approach: 
• There is a generative model: function relating observations  and their 

hidden state (class label)  
• Described via the joint probability measure  defined by 

parameters  
• Want to learn the parameters from data

x ∈ X
y ∈ Y

p(x, y |Θ)
Θ
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• If we have , we can define classifier / decision function p(x, y |Θ)
y = q(x |Θ) = argmaxyp(x, y |Θ)
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• If we have , we can define classifier / decision function p(x, y |Θ)
y = q(x |Θ) = argmaxyp(x, y |Θ)
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• If we have , we can define classifier / decision function p(x, y |Θ)
y = q(x |Θ) = argmaxyp(x, y |Θ)

• Supervised learning: given labelled training data  
• Examples: random forests, deep neural networks

((x1, y1), …, (xn, yn))

xi q(x |Θ) y′ i

yi

loss
Θ
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• If we have , we can define classifier / decision function 
 

• Unsupervised learning: given unlabelled training data 

p(x, y |Θ)
y = q(x |Θ) = argmaxyp(x, y |Θ)

(x1, …, xn)
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• If we have , we can define classifier / decision function 
 

• Unsupervised learning: given unlabelled training data 

p(x, y |Θ)
y = q(x |Θ) = argmaxyp(x, y |Θ)

(x1, …, xn)

q(x |Θ)xi yi
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• Unsupervised learning: given unlabelled training data (x1, …, xn)

q(x |Θ)xi yi

Θ
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• Unsupervised learning: given unlabelled training data (x1, …, xn)

q(x |Θ)xi yi

Θ

• Chicken-and-egg problem: if we have , we can compute ; if 
we have , we can compute 

Θ y = q(x |Θ)
y Θ



Torsten Sattler

Unsupervised Learning

91

slide credit: Václav Hlaváč, Bastian Leibe

• Unsupervised learning: given unlabelled training data (x1, …, xn)

q(x |Θ)xi yi

Θ

• Chicken-and-egg problem: if we have , we can compute ; if 
we have , we can compute 

Θ y = q(x |Θ)
y Θ

• Sounds familiar?
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• Mixture of Gaussians is one generative model: 

•  Gaussian blobs with means , cov. matrices , dimensionality  

• Gaussian  selected with probability  
• Likelihood of observing data point x is weighted mixture of Gaussians:

K μj Σj D

j πj

Mixture of Gaussians

92

slide credit: Bastian Leibe

p(x |Θ) =
K

∑
j=1

πjp(x |Θj) Θ = (π1, μ1, Σ1, …, πK, μK, ΣK)

p(x |Θj) =
1

(2π)D/2 |Σj |
1/2 exp (−

1
2

(x − μj)TΣ−1
j (x − μj))
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• Goal: find parameters  that maximize likelihood function:Θ

Expectation Maximization (EM) Algorithm
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p(data |Θ) =
n

∏
i=1

p(xi |Θ)
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• Goal: find parameters  that maximize likelihood function:Θ

• Expectation Maximization (EM) approach:

Expectation Maximization (EM) Algorithm
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p(data |Θ) =
n

∏
i=1

p(xi |Θ)
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• Goal: find parameters  that maximize likelihood function:Θ

• Expectation Maximization (EM) approach:
• Obtain initial estimate  for Θ0 Θ

Expectation Maximization (EM) Algorithm
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p(data |Θ) =
n

∏
i=1

p(xi |Θ)
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• Goal: find parameters  that maximize likelihood function:Θ

• Expectation Maximization (EM) approach:
• Obtain initial estimate  for Θ0 Θ
• Repeat:

Expectation Maximization (EM) Algorithm
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p(data |Θ) =
n

∏
i=1

p(xi |Θ)
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• Goal: find parameters  that maximize likelihood function:Θ

• Expectation Maximization (EM) approach:
• Obtain initial estimate  for Θ0 Θ
• Repeat:
• E-step: given  assign data points to GaussiansΘi

Expectation Maximization (EM) Algorithm
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• Goal: find parameters  that maximize likelihood function:Θ

• Expectation Maximization (EM) approach:
• Obtain initial estimate  for Θ0 Θ
• Repeat:
• E-step: given  assign data points to GaussiansΘi

• M-step: given assignments, estimate  by maximizing 
likelihood function

Θi+1

Expectation Maximization (EM) Algorithm

93

slide credit: Bastian Leibe, Steve Seitz

p(data |Θ) =
n

∏
i=1

p(xi |Θ)
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• E-step: compute soft assignment of data points to mixture components:

Expectation Maximization (EM) Algorithm

94

slide credit: Bastian Leibe

γj(xi) =
πj𝒩(xi |μj, Σj)

∑K
k=1 πk𝒩(xi |μk, Σk)
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• E-step: compute soft assignment of data points to mixture components:

• M-step: use soft assignments to re-estimate parameters  per component:Θj
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γj(xi) =
πj𝒩(xi |μj, Σj)

∑K
k=1 πk𝒩(xi |μk, Σk)

 = soft number of points assigned to cluster Nj =
n

∑
i=1

γj(xi) j
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• E-step: compute soft assignment of data points to mixture components:

• M-step: use soft assignments to re-estimate parameters  per component:Θj
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γj(xi) =
πj𝒩(xi |μj, Σj)

∑K
k=1 πk𝒩(xi |μk, Σk)

 = soft number of points assigned to cluster Nj =
n

∑
i=1

γj(xi) j

 = probability of component πnew
j = Nj /n j
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• E-step: compute soft assignment of data points to mixture components:

• M-step: use soft assignments to re-estimate parameters  per component:Θj

Expectation Maximization (EM) Algorithm

94

slide credit: Bastian Leibe

γj(xi) =
πj𝒩(xi |μj, Σj)

∑K
k=1 πk𝒩(xi |μk, Σk)

 = soft number of points assigned to cluster Nj =
n

∑
i=1

γj(xi) j

 = probability of component πnew
j = Nj /n j

 = new cluster centerμnew
j =

1
Nj

n

∑
i=1

γj(xi)xi
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• E-step: compute soft assignment of data points to mixture components:

• M-step: use soft assignments to re-estimate parameters  per component:Θj

Expectation Maximization (EM) Algorithm

94

slide credit: Bastian Leibe

γj(xi) =
πj𝒩(xi |μj, Σj)

∑K
k=1 πk𝒩(xi |μk, Σk)

 = soft number of points assigned to cluster Nj =
n

∑
i=1

γj(xi) j

 = probability of component πnew
j = Nj /n j

 = new cluster centerμnew
j =

1
Nj

n

∑
i=1

γj(xi)xi Σnew
j =

1
Nj

n

∑
i=1

γj(xi)(xi − μnew
j )T(xi − μnew

j )
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• k-means clustering is a special case of EM algorithm
• Gaussian mixture model with unit covariances

• E-step: hard assignments to component:

k-Means as Expectation Maximization

95

slide credit: Václav Hlaváč

ki = argmaxk′ 
p(xi |Θk′ 

) = argmaxk′ 
log (exp (−

1
2

(xi − μk′ 
)T(xi − μk′ 

))) = argmink′ 
∥xi − μk′ 

∥2
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• k-means clustering is a special case of EM algorithm
• Gaussian mixture model with unit covariances

• E-step: hard assignments to component:

• M-step: update cluster centers :Θ = (μ1, …, μK)

k-Means as Expectation Maximization

95

slide credit: Václav Hlaváč
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• k-means clustering is a special case of EM algorithm
• Gaussian mixture model with unit covariances

• E-step: hard assignments to component:

• M-step: update cluster centers :Θ = (μ1, …, μK)

k-Means as Expectation Maximization
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1
2
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• k-means clustering is a special case of EM algorithm
• Gaussian mixture model with unit covariances

• E-step: hard assignments to component:

• M-step: update cluster centers :Θ = (μ1, …, μK)

k-Means as Expectation Maximization
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ki = argmaxk′ 
p(xi |Θk′ 

) = argmaxk′ 
log (exp (−

1
2

(xi − μk′ 
)T(xi − μk′ 
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• k-means clustering is a special case of EM algorithm
• Gaussian mixture model with unit covariances

• E-step: hard assignments to component:

• M-step: update cluster centers :Θ = (μ1, …, μK)

k-Means as Expectation Maximization
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ki = argmaxk′ 
p(xi |Θk′ 

) = argmaxk′ 
log (exp (−

1
2

(xi − μk′ 
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• k-means clustering is a special case of EM algorithm
• Gaussian mixture model with unit covariances

• E-step: hard assignments to component:

• M-step: update cluster centers :Θ = (μ1, …, μK)

k-Means as Expectation Maximization

95

slide credit: Václav Hlaváč

ki = argmaxk′ 
p(xi |Θk′ 

) = argmaxk′ 
log (exp (−

1
2

(xi − μk′ 
)T(xi − μk′ 

))) = argmink′ 
∥xi − μk′ 

∥2

Θ* = argmaxΘ

n

∑
i=1

log(p(xi |Θki
) = argminμ1,…,μk

n

∑
i=1

∥xi − μki
∥2

= argminμ1 ∑
{i|ki=1}

∥xi − μ1∥2 , …, argminμK ∑
{i|ki=K}

∥xi − μK∥2

⇒ μj =
1

|{i |ki = j} | ∑
{i|ki=j}

xi, j = 1,…, K
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• General statistical approach for missing data / data with hidden states
• Can be used to obtain Maximum Likelihood Estimate (MLE) even if MLE 

cannot be computed directly
• General concept: 
• Marginalize over hidden states : 

• Simplify estimation of  by inferring hidden states

y ∈ Y

p(x |Θ)

p(x |Θ) = ∑
y

p(x, y |Θ)
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The EM Algorithm
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• General statistical approach for missing data / data with hidden states
• Can be used to obtain Maximum Likelihood Estimate (MLE) even if MLE 

cannot be computed directly
• General concept: 
• Marginalize over hidden states : 

• Simplify estimation of  by inferring hidden states

y ∈ Y

p(x |Θ)

• Guaranteed to converge as cost function decreases monotonically (proof via 
special form of Jensen’s inequality)

• No general guarantees about global optimality, EM is essentially gradient 
ascent 

p(x |Θ) = ∑
y

p(x, y |Θ)
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• Starting from initial estimate , iterate:Θ0

• E-step: estimate lower bound of the likelihood function  at point L(Θ) Θt

L(Θ) = p(data |Θ) = ∏
i

p(xi |Theta) = ∏
i

∑
y

p(xi, y |Θ)
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EM Algorithm Maximizes Lower Bound  on Likelihood
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• Starting from initial estimate , iterate:Θ0

• E-step: estimate lower bound of the likelihood function  at point L(Θ) Θt

• M-step: estimate  that maximizes lower boundΘt+1

L(Θ) = p(data |Θ) = ∏
i

p(xi |Theta) = ∏
i

∑
y

p(xi, y |Θ)
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• Probabilistic interpretation of data 
• Soft assignments instead of hard assignments 
• Generative model: can predict new datapoint
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The EM Algorithm

99

slide credit: Bastian Leibe image credit: Serge Belongie

• Pros: 
• Probabilistic interpretation of data 
• Soft assignments instead of hard assignments 
• Generative model: can predict new datapoint

• Cons: 
• Local optimization will lead to local minima 
• Initialization is thus important (e.g., use k-means for initialization) 
• Similar to k-means clustering: need estimate for  
• Need to choose proper generative model 
• Numerical instabilities can be an issue

K


