Digital Image - Lecture 08

Image Segmentation Part II

Torsten Sattler

Czech Institute of Informatics, Robotics and Cybernetics Czech Technical University in Prague

slides adapted from Václav Hlaváč and Bastian Leibe

Recap: What Is Image Segmentation?

Image, courtesy Ondřej Drbohlav

Goal: segment image into (semantically) meaningful regions

slide credit: Václav Hlaváč, Bastian Leibe, Kristen Grauman, Svetlana Lazebnik

A simple approach to segmentation: (intensity) thresholding

slide credit: Václav Hlaváč

- A simple approach to segmentation: (intensity) thresholding
- Segmentation based on spatial coherence: edge-based segmentation, region growing

slide credit: Václav Hlaváč

- A simple approach to segmentation: (intensity) thresholding
- Segmentation based on spatial coherence: edge-based segmentation, region growing
- Segmentation as a clustering problem: k-means clustering, mean-shift clustering

slide credit: Václav Hlaváč

- A simple approach to segmentation: (intensity) thresholding
- Segmentation based on spatial coherence: edge-based segmentation, region growing
- Segmentation as a clustering problem: k-means clustering, mean-shift clustering
- Segmentation as a statistical (unsupervised) learning problem: expectation maximization (EM) algorithm

slide credit: Václav Hlaváč

- A simple approach to segmentation: (intensity) thresholding
- Segmentation based on spatial coherence: edge-based segmentation, region growing
- Segmentation as a clustering problem: k-means clustering, mean-shift clustering
- Segmentation as a statistical (unsupervised) learning problem: expectation maximization (EM) algorithm
- Next lecture: graph-based segmentation, supervised learning with neural networks (if time and interest)

slide credit: Václav Hlaváč

simple g heuristic

- A simple approach to segmentation: (intensity) thresholding
- Segmentation based on spatial coherence: edge-based segmentation, region growing
- Segmentation as a clustering problem: k-means clustering, mean-shift clustering
- Segmentation as a statistical (unsupervised) learning problem: expectation maximization (EM) algorithm

complex § principled Next lecture: graph-based segmentation, supervised learning with neural networks (if time and interest)

slide credit: Václav Hlaváč

slide credit: Václav Hlaváč

simple background

slide credit: Václav Hlaváč

distinctly ? colored objects

simple background

pixel (i,j) with intensity f(i,j)

distinctly ? colored objects

simple background

pixel (i,j) with intensity f(i,j)

generate binary image b with

$$b(i,j) = \begin{cases} 1 & \text{if } f(i,j) \ge T \\ 0 & \text{if } f(i,j) < T \end{cases}$$

distinctly de colored objects

simple background

pixel (i,j) with intensity f(i,j)

generate binary image b with

$$b(i,j) = \begin{cases} 1 & \text{if } f(i,j) \ge T \\ 0 & \text{if } f(i,j) < T \end{cases}$$

threshold

distinctly de colored objects

slide credit: Václav Hlaváč

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

simple background

slide credit: Václav Hlaváč

slide credit: Václav Hlaváč

slide credit: Václav Hlaváč

slide credit: Václav Hlaváč

Choose thresholds based on decision boundaries: p(foreground | x) > p(background | x)

Recap: k-Means Clustering

Randomly initialize k cluster centers

Repeat until assignments / centers do not change:

Assign each point to the closest center

Recompute centers as mean of all points assigned to centers

[Lloyd, Least square quantization in PCM's, Bell Telephone Laboratories Paper 1957] [Lloyd, Least squares quantization in PCM, Spec. issue on quantiz., IEEE Trans. Inform. Theory, 28:129–137, 1982]

slide credit: Y. Ukrainitz & B. Sarel

slide credit: Y. Ukrainitz & B. Sarel

Torsten Sattler

8

slide credit: Y. Ukrainitz & B. Sarel

slide credit: Y. Ukrainitz & B. Sarel

slide credit: Y. Ukrainitz & B. Sarel

slide credit: Y. Ukrainitz & B. Sarel

slide credit: Y. Ukrainitz & B. Sarel

Recap: Mean Shift Clustering

- Clusters: all data points in attraction basin of mode
- Attraction basin: regions where mean shift leads to same mode

slide credit: Bastian Leibe, Y. Ukrainitz & B. Sarel

Examples

[D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002]

slide credit: Václav Hlaváč, Bastian Leibe, Svetlana Lazebnik

Lecture Overview - Today

simple § heuristic

- A simple approach to segmentation: (intensity) thresholding
- Segmentation based on spatial coherence: edge-based segmentation, region growing
- Segmentation as a clustering problem: k-means clustering, mean-shift clustering
- Segmentation as a statistical (unsupervised) learning problem: expectation maximization (EM) algorithm

complex & Graph-based segmentation

• Supervised learning with neural networks (per video later)

slide credit: Václav Hlaváč

A Statistical Learning Perspective on Clustering

- Basic questions of practical relevance:
 - What is the shape of each cluster?
 - What is the probability a point p belongs to cluster c?

slide credit: Bastian Leibe

A Statistical Learning Perspective on Clustering

- Basic questions of practical relevance:
 - What is the shape of each cluster?
 - What is the probability a point p belongs to cluster c?
- k-means clustering cannot answer these questions

slide credit: Bastian Leibe

A Statistical Learning Perspective on Clustering

- Basic questions of practical relevance:
 - What is the shape of each cluster?
 - What is the probability a point p belongs to cluster c?
- k-means clustering cannot answer these questions
- Statistical approach:
 - There is a generative model: function relating observations $x \in X$ and their hidden state (class label) $y \in Y$
 - Described via the joint probability measure $p(x, y \mid \Theta)$ defined by parameters Θ
 - Want to learn the parameters from data

slide credit: Bastian Leibe

Supervised Learning

• If we have $p(x,y \mid \Theta)$, we can define classifier / decision function $y=q(x \mid \Theta)=\operatorname{argmax}_{_{V}} p(x,y \mid \Theta)$

slide credit: Václav Hlaváč

Supervised Learning

- If we have $p(x, y | \Theta)$, we can define classifier / decision function $y = q(x | \Theta) = \operatorname{argmax}_{y} p(x, y | \Theta)$
- Supervised learning: given labelled training data $((x_1, y_1), \ldots, (x_n, y_n))$
 - Examples: random forests, deep neural networks

slide credit: Václav Hlaváč

Supervised Learning

- If we have $p(x,y \mid \Theta)$, we can define classifier / decision function $y=q(x \mid \Theta)=\operatorname{argmax}_{v} p(x,y \mid \Theta)$
- Supervised learning: given labelled training data $((x_1, y_1), \ldots, (x_n, y_n))$
 - Examples: random forests, deep neural networks

 \mathcal{X}_i

 y_i

slide credit: Václav Hlaváč

Supervised Learning

- If we have $p(x, y | \Theta)$, we can define classifier / decision function $y = q(x | \Theta) = \operatorname{argmax}_{y} p(x, y | \Theta)$
- Supervised learning: given labelled training data $((x_1, y_1), \ldots, (x_n, y_n))$
 - Examples: random forests, deep neural networks

y

slide credit: Václav Hlaváč

Torsten Sattler

18

Supervised Learning

- If we have $p(x, y | \Theta)$, we can define classifier / decision function $y = q(x | \Theta) = \operatorname{argmax}_{y} p(x, y | \Theta)$
- Supervised learning: given labelled training data $((x_1, y_1), \ldots, (x_n, y_n))$
 - Examples: random forests, deep neural networks

slide credit: Václav Hlaváč

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

Supervised Learning

- If we have $p(x, y | \Theta)$, we can define classifier / decision function $y = q(x | \Theta) = \operatorname{argmax}_{y} p(x, y | \Theta)$
- Supervised learning: given labelled training data $((x_1, y_1), \ldots, (x_n, y_n))$
 - Examples: random forests, deep neural networks

slide credit: Václav Hlaváč

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

- If we have $p(x, y | \Theta)$, we can define classifier / decision function $y = q(x | \Theta) = \operatorname{argmax}_{v} p(x, y | \Theta)$
- Unsupervised learning: given unlabelled training data (x_1, \ldots, x_n)

slide credit: Václav Hlaváč

- If we have $p(x, y | \Theta)$, we can define classifier / decision function $y = q(x | \Theta) = \operatorname{argmax}_{v} p(x, y | \Theta)$
- Unsupervised learning: given unlabelled training data (x_1, \ldots, x_n)

slide credit: Václav Hlaváč

- If we have $p(x, y | \Theta)$, we can define classifier / decision function $y = q(x | \Theta) = \operatorname{argmax}_{v} p(x, y | \Theta)$
- Unsupervised learning: given unlabelled training data (x_1, \ldots, x_n)

slide credit: Václav Hlaváč

• Unsupervised learning: given unlabelled training data (x_1, \ldots, x_n)

slide credit: Václav Hlaváč, Bastian Leibe

• Unsupervised learning: given unlabelled training data $(x_1, ..., x_n)$

• Chicken-and-egg problem: if we have Θ , we can compute $y=q(x \mid \Theta)$; if we have y, we can compute Θ

slide credit: Václav Hlaváč, Bastian Leibe

Torsten Sattler

20

• Unsupervised learning: given unlabelled training data $(x_1, ..., x_n)$

- Chicken-and-egg problem: if we have Θ , we can compute $y=q(x \mid \Theta)$; if we have y, we can compute Θ
- Sounds familiar?

slide credit: Václav Hlaváč, Bastian Leibe

Mixture of Gaussians

21

- Mixture of Gaussians is one generative model:

•
$$K$$
 Gaussian blobs with means μ_j , cov. matrices Σ_j , dimensionality D
$$p(x \mid \Theta_j) = \frac{1}{(2\pi)^{D/2} \mid \Sigma_j \mid^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_j)^T \Sigma_j^{-1} (x - \mu_j)\right)$$

- Gaussian j selected with probability π_i
- Likelihood of observing data point x is weighted mixture of Gaussians:

$$p(x \mid \Theta) = \sum_{j=1}^{K} \pi_j p(x \mid \Theta_j) \quad \Theta = (\pi_1, \mu_1, \Sigma_1, \dots, \pi_K, \mu_K, \Sigma_K)$$

slide credit: Bastian Leibe

• Goal: find parameters Θ that maximize likelihood function:

$$p(\text{data} \mid \Theta) = \prod_{i=1}^{n} p(x_i \mid \Theta)$$

slide credit: Bastian Leibe, Steve Seitz

• Goal: find parameters Θ that maximize likelihood function:

$$p(\text{data} | \Theta) = \prod_{i=1}^{n} p(x_i | \Theta)$$

Expectation Maximization (EM) approach:

slide credit: Bastian Leibe, Steve Seitz

• Goal: find parameters Θ that maximize likelihood function:

$$p(\text{data} | \Theta) = \prod_{i=1}^{n} p(x_i | \Theta)$$

- Expectation Maximization (EM) approach:
 - Obtain initial estimate Θ^0 for Θ

slide credit: Bastian Leibe, Steve Seitz

• Goal: find parameters Θ that maximize likelihood function:

$$p(\text{data} \mid \Theta) = \prod_{i=1}^{n} p(x_i \mid \Theta)$$

22

- Expectation Maximization (EM) approach:
 - Obtain initial estimate Θ^0 for Θ
 - Repeat:

slide credit: Bastian Leibe, Steve Seitz

• Goal: find parameters Θ that maximize likelihood function:

$$p(\text{data} | \Theta) = \prod_{i=1}^{n} p(x_i | \Theta)$$

22

- Expectation Maximization (EM) approach:
 - Obtain initial estimate Θ^0 for Θ
 - Repeat:
 - E-step: given Θ^i assign data points to Gaussians

slide credit: Bastian Leibe, Steve Seitz

• Goal: find parameters Θ that maximize likelihood function:

$$p(\text{data} | \Theta) = \prod_{i=1}^{n} p(x_i | \Theta)$$

- Expectation Maximization (EM) approach:
 - Obtain initial estimate Θ^0 for Θ
 - Repeat:
 - E-step: given Θ^i assign data points to Gaussians
 - M-step: given assignments, estimate Θ^{i+1} by maximizing likelihood function

slide credit: Bastian Leibe, Steve Seitz

• E-step: compute soft assignment of data points to mixture components:

$$\gamma_j(x_i) = \frac{\pi_j \mathcal{N}(x_i | \mu_j, \Sigma_j)}{\sum_{k=1}^K \pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)}$$

slide credit: Bastian Leibe

• E-step: compute soft assignment of data points to mixture components:

$$\gamma_j(x_i) = \frac{\pi_j \mathcal{N}(x_i | \mu_j, \Sigma_j)}{\sum_{k=1}^K \pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)}$$

• M-step: use soft assignments to re-estimate parameters Θ_j per component:

slide credit: Bastian Leibe

• E-step: compute soft assignment of data points to mixture components:

$$\gamma_j(x_i) = \frac{\pi_j \mathcal{N}(x_i | \mu_j, \Sigma_j)}{\sum_{k=1}^K \pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)}$$

• M-step: use soft assignments to re-estimate parameters Θ_j per component:

$$N_j = \sum_{i=1}^n \gamma_j(x_i)$$
 = soft number of points assigned to cluster j

slide credit: Bastian Leibe

• E-step: compute soft assignment of data points to mixture components:

$$\gamma_j(x_i) = \frac{\pi_j \mathcal{N}(x_i | \mu_j, \Sigma_j)}{\sum_{k=1}^K \pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)}$$

• M-step: use soft assignments to re-estimate parameters Θ_j per component:

$$N_j = \sum_{i=1}^n \gamma_j(x_i)$$
 = soft number of points assigned to cluster j

$$\pi_i^{\text{new}} = N_i/n$$
 = probability of component j

slide credit: Bastian Leibe

Torsten Sattler

23

• E-step: compute soft assignment of data points to mixture components:

$$\gamma_j(x_i) = \frac{\pi_j \mathcal{N}(x_i | \mu_j, \Sigma_j)}{\sum_{k=1}^K \pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)}$$

• M-step: use soft assignments to re-estimate parameters Θ_j per component:

$$N_j = \sum_{i=1}^n \gamma_j(x_i)$$
 = soft number of points assigned to cluster j

$$\pi_i^{\text{new}} = N_j/n = \text{probability of component } j$$

$$\mu_j^{\text{new}} = \frac{1}{N_j} \sum_{i=1}^n \gamma_j(x_i) x_i = \text{new cluster center}$$

slide credit: Bastian Leibe

• E-step: compute soft assignment of data points to mixture components:

$$\gamma_j(x_i) = \frac{\pi_j \mathcal{N}(x_i | \mu_j, \Sigma_j)}{\sum_{k=1}^K \pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)}$$

• M-step: use soft assignments to re-estimate parameters Θ_j per component:

$$N_j = \sum_{i=1}^n \gamma_j(x_i)$$
 = soft number of points assigned to cluster j

$$\pi_j^{\text{new}} = N_j/n = \text{probability of component } j$$

$$\mu_j^{\text{new}} = \frac{1}{N_j} \sum_{i=1}^n \gamma_j(x_i) x_i = \text{new cluster center} \qquad \Sigma_j^{\text{new}} = \frac{1}{N_j} \sum_{i=1}^n \gamma_j(x_i) (x_i - \mu_j^{\text{new}})^T (x_i - \mu_j^{\text{new}})$$

slide credit: Bastian Leibe

k-means clustering is a special case of EM algorithm

slide credit: Václav Hlaváč

- k-means clustering is a special case of EM algorithm
- Gaussian mixture model with unit covariances

slide credit: Václav Hlaváč

- k-means clustering is a special case of EM algorithm
- Gaussian mixture model with unit covariances
- E-step: hard assignments to component:

$$k_i = \operatorname{argmax}_{k'} p(x_i | \Theta_{k'}) = \operatorname{argmax}_{k'} \log \left(\exp \left(-\frac{1}{2} (x_i - \mu_{k'})^T (x_i - \mu_{k'}) \right) \right) = \operatorname{argmin}_{k'} ||x_i - \mu_{k'}||^2$$

slide credit: Václav Hlaváč

- k-means clustering is a special case of EM algorithm
- Gaussian mixture model with unit covariances
- E-step: hard assignments to component:

$$k_i = \operatorname{argmax}_{k'} p(x_i | \Theta_{k'}) = \operatorname{argmax}_{k'} \log \left(\exp \left(-\frac{1}{2} (x_i - \mu_{k'})^T (x_i - \mu_{k'}) \right) \right) = \operatorname{argmin}_{k'} ||x_i - \mu_{k'}||^2$$

• M-step: update cluster centers $\Theta = (\mu_1, ..., \mu_K)$:

slide credit: Václav Hlaváč

- k-means clustering is a special case of EM algorithm
- Gaussian mixture model with unit covariances
- E-step: hard assignments to component:

$$k_i = \operatorname{argmax}_{k'} p(x_i | \Theta_{k'}) = \operatorname{argmax}_{k'} \log \left(\exp \left(-\frac{1}{2} (x_i - \mu_{k'})^T (x_i - \mu_{k'}) \right) \right) = \operatorname{argmin}_{k'} ||x_i - \mu_{k'}||^2$$

• M-step: update cluster centers $\Theta = (\mu_1, ..., \mu_K)$:

$$\Theta^* = \operatorname{argmax}_{\Theta} \sum_{i=1}^{n} \log(p(x_i | \Theta_{k_i}))$$

slide credit: Václav Hlaváč

- k-means clustering is a special case of EM algorithm
- Gaussian mixture model with unit covariances
- E-step: hard assignments to component:

$$k_i = \operatorname{argmax}_{k'} p(x_i | \Theta_{k'}) = \operatorname{argmax}_{k'} \log \left(\exp \left(-\frac{1}{2} (x_i - \mu_{k'})^T (x_i - \mu_{k'}) \right) \right) = \operatorname{argmin}_{k'} ||x_i - \mu_{k'}||^2$$

• M-step: update cluster centers $\Theta = (\mu_1, ..., \mu_K)$:

$$\Theta^* = \operatorname{argmax}_{\Theta} \sum_{i=1}^{n} \log(p(x_i | \Theta_{k_i})) = \operatorname{argmin}_{\mu_1, \dots, \mu_k} \sum_{i=1}^{n} ||x_i - \mu_{k_i}||^2$$

slide credit: Václav Hlaváč

- k-means clustering is a special case of EM algorithm
- Gaussian mixture model with unit covariances
- E-step: hard assignments to component:

$$k_i = \operatorname{argmax}_{k'} p(x_i | \Theta_{k'}) = \operatorname{argmax}_{k'} \log \left(\exp \left(-\frac{1}{2} (x_i - \mu_{k'})^T (x_i - \mu_{k'}) \right) \right) = \operatorname{argmin}_{k'} ||x_i - \mu_{k'}||^2$$

• M-step: update cluster centers $\Theta = (\mu_1, ..., \mu_K)$:

$$\begin{split} \Theta^* &= \operatorname{argmax}_{\Theta} \sum_{i=1}^n \log(p(x_i | \Theta_{k_i}) = \operatorname{argmin}_{\mu_1, \dots, \mu_k} \sum_{i=1}^n \|x_i - \mu_{k_i}\|^2 \\ &= \operatorname{argmin}_{\mu_1} \sum_{\{i | k_i = 1\}} \|x_i - \mu_1\|^2, \dots, \operatorname{argmin}_{\mu_K} \sum_{\{i | k_i = K\}}^n \|x_i - \mu_K\|^2 \end{split}$$

slide credit: Václav Hlaváč

- k-means clustering is a special case of EM algorithm
- Gaussian mixture model with unit covariances
- E-step: hard assignments to component:

$$k_i = \operatorname{argmax}_{k'} p(x_i | \Theta_{k'}) = \operatorname{argmax}_{k'} \log \left(\exp \left(-\frac{1}{2} (x_i - \mu_{k'})^T (x_i - \mu_{k'}) \right) \right) = \operatorname{argmin}_{k'} ||x_i - \mu_{k'}||^2$$

• M-step: update cluster centers $\Theta = (\mu_1, ..., \mu_K)$:

$$\begin{split} \Theta^* &= \operatorname{argmax}_{\Theta} \sum_{i=1}^n \log(p(x_i | \Theta_{k_i}) = \operatorname{argmin}_{\mu_1, \dots, \mu_k} \sum_{i=1}^n \|x_i - \mu_{k_i}\|^2 \\ &= \operatorname{argmin}_{\mu_1} \sum_{\{i | k_i = 1\}} \|x_i - \mu_1\|^2, \dots, \operatorname{argmin}_{\mu_K} \sum_{\{i | k_i = K\}} \|x_i - \mu_K\|^2 \\ &\Rightarrow \mu_j = \frac{1}{|\{i | k_i = j\}|} \sum_{\{i | k_i = j\}} x_i, \quad j = 1, \dots, K \end{split}$$
 slide credit: Václav Hlaváč

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

Torsten Sattler

24

EM Algorithm for Segmentation

Original image

EM segmentation results

slide credit: Bastian Leibe

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

image credit: Serge Belongie

General statistical approach for missing data / data with hidden states

slide credit: Václav Hlaváč

- General statistical approach for missing data / data with hidden states
- Can be used to obtain Maximum Likelihood Estimate (MLE) even if MLE cannot be computed directly

slide credit: Václav Hlaváč

- General statistical approach for missing data / data with hidden states
- Can be used to obtain Maximum Likelihood Estimate (MLE) even if MLE cannot be computed directly
- General concept:
 - Marginalize over hidden states $y \in Y$: $p(x|\Theta) = \sum_{y} p(x,y|\Theta)$
 - Simplify estimation of $p(x|\Theta)$ by inferring hidden states

slide credit: Václav Hlaváč

- General statistical approach for missing data / data with hidden states
- Can be used to obtain Maximum Likelihood Estimate (MLE) even if MLE cannot be computed directly
- General concept:
 - Marginalize over hidden states $y \in Y$: $p(x|\Theta) = \sum_{y} p(x,y|\Theta)$
 - Simplify estimation of $p(x|\Theta)$ by inferring hidden states
- Guaranteed to converge as cost function decreases monotonically (proof via special form of Jensen's inequality)

slide credit: Václav Hlaváč

- General statistical approach for missing data / data with hidden states
- Can be used to obtain Maximum Likelihood Estimate (MLE) even if MLE cannot be computed directly
- General concept:
 - Marginalize over hidden states $y \in Y$: $p(x|\Theta) = \sum_{y} p(x,y|\Theta)$
 - Simplify estimation of $p(x|\Theta)$ by inferring hidden states
- Guaranteed to converge as cost function decreases monotonically (proof via special form of Jensen's inequality)
- No general guarantees about global optimality, EM is essentially gradient ascent

slide credit: Václav Hlaváč

The EM Algorithm

• Pros:

- Probabilistic interpretation of data
- Soft assignments instead of hard assignments
- Generative model: can predict new datapoint

slide credit: Bastian Leibe

The EM Algorithm

• Pros:

- Probabilistic interpretation of data
- Soft assignments instead of hard assignments
- Generative model: can predict new datapoint

• Cons:

- Local optimization will lead to local minima
- Initialization is very important (e.g., use multiple k-means runs and pick the best run as initialization)
- Singular clusters can be a problem
- ullet Similar to k-means clustering: need estimate for K
- Need to choose proper generative model
- Numerical instabilities can be an issue

slide credit: Bastian Leibe

Lecture Overview - Today

simple § heuristic

- A simple approach to segmentation: (intensity) thresholding
- Segmentation based on spatial coherence: edge-based segmentation, region growing
- Segmentation as a clustering problem: k-means clustering, mean-shift clustering
- Segmentation as a statistical (unsupervised) learning problem: expectation maximization (EM) algorithm
- complex & Graph-based segmentation
 - Supervised learning with neural networks (per video later)

slide credit: Václav Hlaváč

Graphical representation of our models so far

• Graphical representation of our models so far observations (e.g., colors, intensities)

Graphical representation of our models so far

observations (e.g., colors, intensities)

hidden state (labels)

Graphical representation of our models so far

observations (e.g., colors, intensities)

Torsten Sattler

29

Graphical representation of our models so far

observations (e.g., colors, intensities)

Take also compatibility between labels into account

Take also compatibility between labels into account

observations (e.g., colors, intensities)

Take also compatibility between labels into account

observations (e.g., colors, intensities)

hidden state (labels)

Take also compatibility between labels into account

observations (e.g., colors, intensities)

Take also compatibility between labels into account

observations (e.g., colors, intensities)

hidden state (labels)

Take also compatibility between labels into account

slide credit: Bastian Leibe

Take also compatibility between labels into account

slide credit: Bastian Leibe

Take also compatibility between labels into account

state-state compatibility function

slide credit: Bastian Leibe

Take also compatibility between labels into account

state-state compatibility function

slide credit: Bastian Leibe

Take also compatibility between labels into account

state-state compatibility function

Modular and local graphical model, can model global effects

slide credit: Bastian Leibe

• Maximizing joint probability $p(x, y) = \prod_{i} \Phi(x_i, y_i) \prod_{i \neq i} \Psi(y_i, y_j)$

slide credit: Bastian Leibe

- Maximizing joint probability $p(x, y) = \prod_{i} \Phi(x_i, y_i) \prod_{i,j} \Psi(y_i, y_j)$
- Identical to minimizing negative log:

$$-\log(p(x,y)) = -\sum_{i} \log(\Phi(x_i,y_i)) - \sum_{i,j} \log(\Psi(y_i,y_j))$$

slide credit: Bastian Leibe

- Maximizing joint probability $p(x,y) = \prod_{i} \Phi(x_i,y_i) \prod_{i,j} \Psi(y_i,y_j)$
- Identical to minimizing negative log:

$$-\log(p(x,y)) = -\sum_{i} \log(\Phi(x_i, y_i)) - \sum_{i,j} \log(\Psi(y_i, y_j))$$
$$E(x,y) = \sum_{i} \phi(x_i, y_i) + \sum_{i,j} \psi(y_i, y_j)$$

slide credit: Bastian Leibe

Torsten Sattler

32

- Maximizing joint probability $p(x,y) = \prod_{i} \Phi(x_i,y_i) \prod_{i,j} \Psi(y_i,y_j)$
- Identical to minimizing negative log:

$$-\log(p(x,y)) = -\sum_{i} \log(\Phi(x_i, y_i)) - \sum_{i,j} \log(\Psi(y_i, y_j))$$
$$E(x,y) = \sum_{i} \phi(x_i, y_i) + \sum_{i,j} \psi(y_i, y_j)$$

• Similar to free-energy problems in statistical mechanics (spin glass theory)

slide credit: Bastian Leibe

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

- Maximizing joint probability $p(x,y) = \prod_{i} \Phi(x_i,y_i) \prod_{i,j} \Psi(y_i,y_j)$
- Identical to minimizing negative log:

$$-\log(p(x, y)) = -\sum_{i} \log(\Phi(x_i, y_i)) - \sum_{i,j} \log(\Psi(y_i, y_j))$$
$$E(x, y) = \sum_{i} \phi(x_i, y_i) + \sum_{i,j} \psi(y_i, y_j)$$

- Similar to free-energy problems in statistical mechanics (spin glass theory)
- E(x, y) thus analogously referred to as an energy function

slide credit: Bastian Leibe

Torsten Sattler

32

$$E(x, y) = \sum_{i} \phi(x_i, y_i) + \sum_{i,j} \psi(y_i, y_j)$$

slide credit: Bastian Leibe

$$E(x,y) = \sum_{i} \phi(x_{i}, y_{i}) + \sum_{i,j} \psi(y_{i}, y_{j})$$
single-node
potentials

slide credit: Bastian Leibe

$$E(x,y) = \sum_{i} \phi(x_{i},y_{i}) + \sum_{i,j} \psi(y_{i},y_{j})$$
single-node pairwise potentials potentials

slide credit: Bastian Leibe

$$E(x,y) = \sum_{i} \phi(x_{i},y_{i}) + \sum_{i,j} \psi(y_{i},y_{j})$$
single-node pairwise potentials

Single-node potentials ("unary potentials"):

slide credit: Bastian Leibe

$$E(x,y) = \sum_{i} \phi(x_{i},y_{i}) + \sum_{i,j} \psi(y_{i},y_{j})$$
 single-node pairwise potentials

- Single-node potentials ("unary potentials"):
 - Encode local information about each pixel / patch / super pixel

slide credit: Bastian Leibe

$$E(x,y) = \sum_{i} \phi(x_{i},y_{i}) + \sum_{i,j} \psi(y_{i},y_{j})$$
 single-node pairwise potentials

- Single-node potentials ("unary potentials"):
 - Encode local information about each pixel / patch / super pixel
 - How likely is it that pixel x_i belongs to label y_i / foreground / background, etc.

slide credit: Bastian Leibe

$$E(x,y) = \sum_{i} \phi(x_{i}, y_{i}) + \sum_{i,j} \psi(y_{i}, y_{j})$$
single-node pairwise potentials potentials

- Single-node potentials ("unary potentials"):
 - Encode local information about each pixel / patch / super pixel
 - How likely is it that pixel x_i belongs to label y_i / foreground / background, etc.
 - Example choice: Mixture of Gaussians (see lab)

$$\phi(x_i, y_i | \theta_{\phi}) = -\log \sum_k \theta_{\phi}(y_i, k) p(k | y_i) \mathcal{N}(x_i | \mu_k, \Sigma_k)$$

slide credit: Bastian Leibe

$$E(x,y) = \sum_{i} \phi(x_{i},y_{i}) + \sum_{i,j} \psi(y_{i},y_{j})$$
single-node pairwise potentials potentials

Pairwise potentials ("binary potentials"):

slide credit: Bastian Leibe

$$E(x,y) = \sum_{i} \phi(x_{i},y_{i}) + \sum_{i,j} \psi(y_{i},y_{j})$$
 single-node pairwise potentials potentials

- Pairwise potentials ("binary potentials"):
 - Encode information about local neighborhoods, e.g., neighboring 4 or 8 pixels

slide credit: Bastian Leibe

$$E(x,y) = \sum_{i} \phi(x_{i},y_{i}) + \sum_{i,j} \psi(y_{i},y_{j})$$
 single-node pairwise potentials

- Pairwise potentials ("binary potentials"):
 - Encode information about local neighborhoods, e.g., neighboring 4 or 8 pixels
 - How likely is it that two pixels should have the same / different labels?

slide credit: Bastian Leibe

$$E(x,y) = \sum_{i} \phi(x_{i},y_{i}) + \sum_{i,j} \psi(y_{i},y_{j})$$
 single-node pairwise potentials

- Pairwise potentials ("binary potentials"):
 - Encode information about local neighborhoods, e.g., neighboring 4 or 8 pixels
 - How likely is it that two pixels should have the same / different labels?
 - Example choice: "contrast sensitive Potts model" (see lab)

$$\psi(y_i, y_j | \theta_{\psi}) = -\theta_{\psi} \delta(y_i \neq y_j) e^{-\frac{1}{2} \frac{||x_i - x_j||^2}{avg(||x_i - x_j||^2)}}$$

slide credit: Bastian Leibe

$$E(x,y) = \sum_{i} \phi(x_{i},y_{i}) + \sum_{i,j} \psi(y_{i},y_{j})$$
 single-node pairwise potentials potentials

image

unary potentials binary potentials segmentation

slide credit: Bastian Leibe, Phil Torr

MRF - Example

Original image

Degraded image

Reconstruction from MRF modeling pixel neighborhood statistics

slide credit: Bastian Leibe

MRF - Example

Original image

Degraded image

Reconstruction from MRF modeling pixel neighborhood statistics

How to optimize MRFs?

slide credit: Bastian Leibe

Want to infer the optimal labeling of pixels based on MRF energy

slide credit: Bastian Leibe

- Want to infer the optimal labeling of pixels based on MRF energy
- Many potential approaches for inference:

slide credit: Bastian Leibe

- Want to infer the optimal labeling of pixels based on MRF energy
- Many potential approaches for inference:
 - Variational methods

slide credit: Bastian Leibe

Torsten Sattler

- Want to infer the optimal labeling of pixels based on MRF energy
- Many potential approaches for inference:
 - Variational methods
 - Belief propagation

slide credit: Bastian Leibe

- Want to infer the optimal labeling of pixels based on MRF energy
- Many potential approaches for inference:
 - Variational methods
 - Belief propagation
 - Graph cuts

slide credit: Bastian Leibe

- Want to infer the optimal labeling of pixels based on MRF energy
- Many potential approaches for inference:
 - Variational methods
 - Belief propagation
 - Graph cuts
 - Very efficient for computer vision / image analysis problems where we have regular structure

slide credit: Bastian Leibe

- Want to infer the optimal labeling of pixels based on MRF energy
- Many potential approaches for inference:
 - Variational methods
 - Belief propagation
 - Graph cuts
 - Very efficient for computer vision / image analysis problems where we have regular structure
 - Optimality guarantees for certain class of energy functions (submodular energies)

slide credit: Bastian Leibe

terminal nodes s, t

slide credit: Václav Hlaváč, Bastian Leibe

Source s

terminal nodes s, t

$$\text{vertices } V = \{v_1, \dots, v_n\} \cup \{s, t\}$$

Sink t

slide credit: Václav Hlaváč, Bastian Leibe

terminal nodes s, t

$$\text{vertices } V = \{v_1, \dots, v_n\} \cup \{s, t\}$$

edges
$$E = \{(s, v_1), (s, v_2), (v_1, v_3), \dots\}$$

slide credit: Václav Hlaváč, Bastian Leibe

Torsten Sattler

terminal nodes s, t

vertices
$$V = \{v_1, ..., v_n\} \cup \{s, t\}$$
 edges $E = \{(s, v_1), (s, v_2), (v_1, v_3), ...\}$ costs $C = \{c(s, v_1), c(s, v_2), c(v_1, v_3), ...\}$

slide credit: Václav Hlaváč, Bastian Leibe

terminal nodes s, t

vertices
$$V = \{v_1, ..., v_n\} \cup \{s, t\}$$
 edges $E = \{(s, v_1), (s, v_2), (v_1, v_3), ...\}$ costs $C = \{c(s, v_1), c(s, v_2), c(v_1, v_3), ...\}$

s-t cut: partition $S, T \subset V$ with $S \cap T = \emptyset, s \in S, t \in T$

slide credit: Václav Hlaváč, Bastian Leibe

Torsten Sattler

slide credit: Václav Hlaváč, Bastian Leibe

Cost of s-t cut: cost of edges from S to T

slide credit: Václav Hlaváč, Bastian Leibe

Cost of s-t cut: cost of edges from S to T

cost: 6 + 2 + 3 = 11

slide credit: Václav Hlaváč, Bastian Leibe

Torsten Sattler

Cost of s-t cut: cost of edges from S to T

cost: 7 + 9 = 16

slide credit: Václav Hlaváč, Bastian Leibe

Cost of s-t cut: cost of edges from S to T

cost: 4 + 2 + 2 = 8

slide credit: Václav Hlaváč, Bastian Leibe

Cost of s-t cut: cost of edges from S to T

cost: 4 + 2 + 2 = 8

s-t mincut: s-t cut with minimum cost

slide credit: Václav Hlaváč, Bastian Leibe

Torsten Sattler

minimize
$$E(x, y) = \sum_{i} \phi(x_i, y_i) + \sum_{i,j} w_{ij} \delta(y_i \neq y_j)$$

label 0

minimize
$$E(x, y) = \sum_{i} \phi(x_i, y_i) + \sum_{i,j} w_{ij} \delta(y_i \neq y_j)$$

label 1

slide credit: Václav Hlaváč, Bastian Leibe,
CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

CYBERNETICS
CTU IN PRAGUE

minimize
$$E(x, y) = \sum_{i} \phi(x_i, y_i) + \sum_{i,j} w_{ij} \delta(y_i \neq y_j)$$

label 1

slide credit: Václav Hlaváč, Bastian Leibe,
CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

label 1

slide credit: Václav Hlaváč, Bastian Leibe,
CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CYBERNETICS

$$\phi(x_i, s) \propto exp(-\|I_i - I_s\|^2/2\sigma^2)$$

minimize
$$E(x, y) = \sum_{i} \phi(x_i, y_i) + \sum_{i,j} w_{ij} \delta(y_i \neq y_j)$$

 $\phi(x_i, t) \propto exp(-\|I_i - I_t\|^2/2\sigma^2)$

slide credit: Václav Hlaváč, Bastian Leibe,

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

CYBERNETICS
CTU IN PRAGUE

CYBERNETICS
CTU IN PRAGUE

$$\phi(x_i, s) \propto exp(-\|I_i - I_s\|^2/2\sigma^2)$$

minimize
$$E(x, y) = \sum_{i} \phi(x_i, y_i) + \sum_{i,j} w_{ij} \delta(y_i \neq y_j)$$

 $\phi(x_i, t) \propto exp(-\|I_i - I_t\|^2/2\sigma^2)$

slide credit: Václav Hlaváč, Bastian Leibe, CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE Yuri Boykov

$$\phi(x_i, s) \propto exp(-\|I_i - I_s\|^2/2\sigma^2)$$

minimize
$$E(x, y) = \sum_{i} \phi(x_i, y_i) + \sum_{i,j} w_{ij} \delta(y_i \neq y_j)$$

$$w_{ij} = exp(-\|I_i - I_j\|^2/2\sigma^2)$$

 $\phi(x_i, t) \propto exp(-||I_i - I_t||^2/2\sigma^2)$

slide credit: Václav Hlaváč, Bastian Leibe,

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

cut edges with low costs

slide credit: Václav Hlaváč, Bastian Leibe,
CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

cut edges with low costs

slide credit: Václav Hlaváč, Bastian Leibe,

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

CYBERNETICS
CTU IN PRAGUE

cut edges with low costs

slide credit: Václav Hlaváč, Bastian Leibe,
CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

cut edges with low costs

resulting components = labelling

slide credit: Václav Hlaváč, Bastian Leibe,
CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

CYBERNETICS
CTU IN PRAGUE

cut edges with low costs

resulting components = labelling

How to compute the s-t mincut?

slide credit: Václav Hlaváč, Bastian Leibe,

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS

TUTI BOYKOV

terminal nodes s, t vertices $V = \{v_1, ..., v_n\} \cup \{s, t\}$ edges $E = \{(s, v_1), (s, v_2), (v_1, v_3), ...\}$ capacities $C = \{c(s, v_1), c(s, v_2), c(v_1, v_3), ...\}$

slide credit: Václav Hlaváč, Bastian Leibe

Torsten Sattler

terminal nodes s, t vertices $V = \{v_1, ..., v_n\} \cup \{s, t\}$ edges $E = \{(s, v_1), (s, v_2), (v_1, v_3), ...\}$ capacities $C = \{c(s, v_1), c(s, v_2), c(v_1, v_3), ...\}$

s-t flow: function $f: E \to \mathbb{R}$ s.t.

slide credit: Václav Hlaváč, Bastian Leibe

Torsten Sattler

terminal nodes s, t vertices $V = \{v_1, ..., v_n\} \cup \{s, t\}$ edges $E = \{(s, v_1), (s, v_2), (v_1, v_3), ...\}$ capacities $C = \{c(s, v_1), c(s, v_2), c(v_1, v_3), ...\}$

s-t flow: function $f: E \to \mathbb{R}$ s.t.

• capacity constraint: $f(e) \le c(e) \quad \forall e \in E$

slide credit: Václav Hlaváč, Bastian Leibe

Torsten Sattler

terminal nodes s, tvertices $V = \{v_1, ..., v_n\} \cup \{s, t\}$ edges $E = \{(s, v_1), (s, v_2), (v_1, v_3), ...\}$ capacities $C = \{c(s, v_1), c(s, v_2), c(v_1, v_3), ...\}$

s-t flow: function $f: E \to \mathbb{R}$ s.t.

- capacity constraint: $f(e) \le c(e) \quad \forall e \in E$
- flow conservation:

$$\sum_{u} f((u, v)) = \sum_{u} f((v, u)) \quad \forall v \in V \setminus \{s, t\}$$

slide credit: Václav Hlaváč, Bastian Leibe

slide credit: Václav Hlaváč, Bastian Leibe

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

s-t maxflow:
largest outgoing flow at s
= largest incoming flow at t

slide credit: Václav Hlaváč, Bastian Leibe

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

s-t maxflow:
largest outgoing flow at s
= largest incoming flow at t

s-t maxflow:
largest outgoing flow at s
= largest incoming flow at t

slide credit: Václav Hlaváč, Bastian Leibe

s-t maxflow:
largest outgoing flow at s
= largest incoming flow at t

slide credit: Václav Hlaváč, Bastian Leibe

Torsten Sattler

46

s-t maxflow:
largest outgoing flow at s
= largest incoming flow at t

Theorem:

maxflow = mincut

max flow = 8 = min cut

slide credit: Václav Hlaváč, Bastian Leibe

Maxflow = Mincut

slide credit: Václav Hlaváč, Bastian Leibe

Maxflow = Mincut

slide credit: Václav Hlaváč, Bastian Leibe

Torsten Sattler

48

Computing Maxflow

Augmenting Path and Push-Relabel

year	discoverer(s)	bound
1951	Dantzig	$O(n^2mU)$
1955	Ford & Fulkerson	$O(m^2U)$
1970	Dinitz	$O(n^2m)$
1972	Edmonds & Karp	$O(m^2 \log U)$
1973	Dinitz	$O(nm \log U)$
1974	Karzanov	$O(n^3)$
1977	Cherkassky	$O(n^2m^{1/2})$
1980	Galil & Naamad	$O(nm\log^2 n)$
1983	Sleator & Tarjan	$O(nm \log n)$
1986	Goldberg & Tarjan	$O(nm\log(n^2/m))$
1987	Ahuja & Orlin	$O(nm + n^2 \log U)$
1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U}/m))$
1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$
1990	Cheriyan et al.	$O(n^3/\log n)$
1990	Alon	$O(nm + n^{8/3} \log n)$
1992	King et al.	$O(nm + n^{2+\epsilon})$
1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$
1994	King et al.	$O(nm\log_{m/(n\log n)} n)$
1997	Goldberg & Rao	$O(m^{3/2}\log(n^2/m)\log U)$
		$O(n^{2/3}m\log(n^2/m)\log U)$

n: #nodes

m: #edges

U: maximum edge weight

Algorithms assume non-negative edge weights

slide credit: Andrew Goldberg, Bastian Leibe

1. Find path with non-zero capacity

slide credit: Václav Hlaváč, Bastian Leibe

1. Find path with non-zero capacity

slide credit: Václav Hlaváč, Bastian Leibe

- 1. Find path with non-zero capacity
- 2. Maximize flow on path

slide credit: Václav Hlaváč, Bastian Leibe

- 1. Find path with non-zero capacity
- 2. Maximize flow on path

slide credit: Václav Hlaváč, Bastian Leibe

- 1. Find path with non-zero capacity
- 2. Maximize flow on path
- 3. Repeat until no such path exists

slide credit: Václav Hlaváč, Bastian Leibe

- 1. Find path with non-zero capacity
- 2. Maximize flow on path
- 3. Repeat until no such path exists

slide credit: Václav Hlaváč, Bastian Leibe

- 1. Find path with non-zero capacity
- 2. Maximize flow on path
- 3. Repeat until no such path exists

slide credit: Václav Hlaváč, Bastian Leibe

- 1. Find path with non-zero capacity
- 2. Maximize flow on path
- 3. Repeat until no such path exists

slide credit: Václav Hlaváč, Bastian Leibe

- 1. Find path with non-zero capacity
- 2. Maximize flow on path
- 3. Repeat until no such path exists

slide credit: Václav Hlaváč, Bastian Leibe

- 1. Find path with non-zero capacity
- 2. Maximize flow on path
- 3. Repeat until no such path exists

slide credit: Václav Hlaváč, Bastian Leibe

- 1. Find path with non-zero capacity
- 2. Maximize flow on path
- 3. Repeat until no such path exists

Assumes non-negative capacities

slide credit: Václav Hlaváč, Bastian Leibe

Maxflow on Images

- Popularized by Boykov & Kolmogorov
- Dual search tree augmenting path algorithm [Boykov & Kolmogorov, PAMI 2004]
 - Efficient approach for finding approximate shortest augmenting paths
 - High worst-case complexity
 - But works better than other methods on the grid graphs defined by images

slide credit: Pushmeet Kohli, Bastian Leibe

A Few More Words on Graph Cuts and MRFs

- Graph cuts globally optimal for binary energies that are submodular
- Multi-label problems with 3 or more labels are NP-hard
- Approximation algorithms extending graph cuts to multi-label case:
 - $\alpha\beta$ -swap
 - α -expansion: iteratively solve binary graph cuts (one label vs. all), factor 2 approximation to optimal solution

slide credit: Bastian Leibe

A Few More Words on Graph Cuts and MRFs

- Minimum cuts can penalize large segments
- Avoid this problem through normalization by component size
- Normalized cut: $\frac{\text{cut}(A,B)}{\operatorname{assoc}(A,V)} + \frac{\text{cut}(A,B)}{\operatorname{assoc}(B,V)}$ (assoc(A,V) = sum of weights of all edges in V that touch A)
- NP-hard, approximation via generalized Eigenvalue problem [Shi & Malik, Normalized Cuts and Image Segmentation, PAMI 2000]

slide credit: Václav Hlaváč

slide credit: Carsten Rother

slide credit: Carsten Rother

Automatic

Segmentation

slide credit: Carsten Rother

[Rother, Kolmogorov, Blake, "GrabCut" — Interactive Foreground Extraction
using Iterated Graph Cuts, SIGGRAPH 2004]
Torsten Sattler

Automatic

Segmentation

slide credit: Carsten Rother

[Rother, Kolmogorov, Blake, "GrabCut" — Interactive Foreground Extraction
using Iterated Graph Cuts, SIGGRAPH 2004]
Torsten Sattler

slide credit: Carsten Rother

slide credit: Carsten Rother

[Rother, Kolmogorov, Blake, "GrabCut" — Interactive Foreground Extraction using Iterated Graph Cuts, SIGGRAPH 2004]
Torsten Sattler

slide credit: Carsten Rother

[Rother, Kolmogorov, Blake, "GrabCut" — Interactive Foreground Extraction using Iterated Graph Cuts, SIGGRAPH 2004]

Torsten Sattler

Input

slide credit: Carsten Rother

initial Gaussian Mixture Model (GMM)

Input

slide credit: Carsten Rother

initial Gaussian Mixture Model (GMM)

Input

EM optimization:

- Apply graph cut with current GMM
- Re-estimate GMM based on segmentation

slide credit: Carsten Rother

[Rother, Kolmogorov, Blake, "GrabCut" — Interactive Foreground Extraction using Iterated Graph Cuts, SIGGRAPH 2004]

initial Gaussian Mixture Model (GMM)

Input

final GMM

EM optimization:

- Apply graph cut with current GMM
- Re-estimate GMM based on segmentation

slide credit: Carsten Rother

[Rother, Kolmogorov, Blake, "GrabCut" — Interactive Foreground Extraction using Iterated Graph Cuts, SIGGRAPH 2004]

initial Gaussian Mixture Model (GMM)

Input

final GMM

EM optimization:

- Apply graph cut with current GMM
- Re-estimate GMM based on segmentation

Segmentation

slide credit: Carsten Rother

[Rother, Kolmogorov, Blake, "GrabCut" — Interactive Foreground Extraction using Iterated Graph Cuts, SIGGRAPH 2004]

slide credit: Carsten Rother

[Rother, Kolmogorov, Blake, "GrabCut" — Interactive Foreground Extraction using Iterated Graph Cuts, SIGGRAPH 2004]

Torsten Sattler

Quiz: Which Examples Are Easy, Which Are Hard?

slide credit: Václav Hlaváč, Carsten Rother

Easier Examples

slide credit: Václav Hlaváč, Carsten Rother

Harder Examples

slide credit: Václav Hlaváč, Carsten Rother

Other Examples for Graph Cuts

Image Restoration

Stereo Disparity Estimation

slide credit: Václav Hlaváč

Graph Cuts - Summary

• Pros:

- Powerful approach, applicable to many labelling problems
- Based on probabilistic model (MRF)
- Efficient algorithms available for many computer vision / image analysis problems

slide credit: Bastian Leibe

Graph Cuts - Summary

• Pros:

- Powerful approach, applicable to many labelling problems
- Based on probabilistic model (MRF)
- Efficient algorithms available for many computer vision / image analysis problems

• Cons:

- Graph cuts can only (optimally) solve limited range of problems (binary submodular energy functions), not full range of what can be modeled by MRFs)
- Only approximations for multi-label case

slide credit: Bastian Leibe

