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Image, courtesy Ondrej Drbohlav

Goal: segment image into (semantically) meaningful regions

slide credit: Vaclav Hlavac, Bastian Leibe, Kristen Grauman, Svetlana Lazebnik
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* A simple approach to segmentation: (intensity) thresholding
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 Segmentation based on spatial coherence: edge-based
segmentation, region growing

e Segmentation as a clustering problem: k-means clustering,
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* Segmentation as a statistical (unsupervised) learning
problem: expectation maximization (EM) algorithm
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Recap: Last Lecture
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| ¢ Segmentation based on spatial coherence: edge-based
i segmentation, region growing

* A simple approach to segmentation: (intensity) thresholding

* Segmentation as a clustering problem: k-means clustering,
i  mean-shift clustering

' * Segmentation as a statistical (unsupervised) learning
i  problem: expectation maximization (EM) algorithm

complex §

i * Next lecture: graph-based segmentation, supervised
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learning with neural networks (if time and interest)
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Recap: Image Segmentation via Thresholding
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Recap: Image Segmentation via Thresholding

pixel (i, 7) with intensity (i, 7)

generate binary image b with

. it fa,)=>T
b(i,]) = . C
0 f f.) <T

distinctl Y ‘ threshold

colored objects stmple backgrownd

slide credit: Vaclav Hlavac

Torsten Sattler 4



Recap: "Optimal” Thresholding Via Mixture of Gaussians
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Recap: "Optimal” Thresholding Via Mixture of Gaussians

”o]ntﬁwual,” ”optimal,”
threshold threshold

|

Choose thresholds based on decision boundaries:
p(foreground | x) > p(background | x)

slide credit: Vaclav Hlavac
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Recap: k-Means Clustering

| Randomly initialize k cluster centers ?' or
Repeat until assignments / centers do not change: | @
Assign each point to the closest center ® ©
Recompute centers as mean of all points assigned to] .
centers :
[Lloyd, Least square quantization in PCM'’s, Bell Telephone Laboratories Paper 1957]
[Lloyd, Least squares quantization in PCM, Spec. issue on quantiz., IEEE Trans. Inform. Theory, 28:129-137, 1982]
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CTU IN PRAGUE



Recap: Mean Shift Algorithm

9 Region of
9 @ ® d interest
- @ .. @ e Center of
¢ ."' ® _ o mass
» ® . o
& \ o @
° == o | @ o o °
® o © © poooe ° ®
® ° 49 AN
? ) ? . °* . L° .
e o ©® o °
& ° 9
o ® o
? ) X
® ® ¢ @ o Mean Shift
9 _ vector

slide credit: Y. Ukrainitz & B. Sarel
fo

CZECH INSTITUTE
OF INFORMATICS

CyBERNETICS. Torsten Sattler

CTU IN PRAGUE

W



Recap: Mean Shift Algorithm

9 Region of
. ® e J interest
- @ P . ¢ ) Center of
¢ Yot 4 ? mass
? ® o ¢ o
| ® &
W AN e 6 e o e
® | / ” | @ )
N
® o © © poooe ° ®
® o »© ..O @
/ . .
? ) ? . °* . L° .
e o ©® o °
® ° 9
o ® o
? ) X
® ® ¢ @ o Mean Shift
@ _ vector

slide credit: Y. Ukrainitz & B. Sarel
fo

CZECH INSTITUTE
OF INFORMATICS

CyBERNETICS. Torsten Sattler

CTU IN PRAGUE

W



Recap: Mean Shift Algorithm

o Region of
® d ® 9 interest
o . : ‘..' ¢ ® Center of
9 / @ o \ °®
® 0\® @
'@ ® ® \ @
o ® Qe o/ ¢
Sxeeqf ¢
. e © ¢ 2000 ° 9
o o 09%9%0,
/@ »
® ©
o 9 ® ?
& ® ¢
o ® o
® r A
. o & 4 9 Mean Shift
R _ vector

slide credit: Y. Ukrainitz & B. Sarel
fo

CZECH INSTITUTE
OF INFORMATICS

CyBERNETICS. Torsten Sattler

CTU IN PRAGUE

W



Recap: Mean Shift Algorithm

9 Region of
o @ o 9 interest
.. | ‘._ ¢ @ Center of
9 ® @ ) &
| ) o \ © o
o .
9 o o © e )
» e e
. . g . . M .
209D :
o o © o o000 |
& ® o :... :
. ' . ° * P o .
4 L | |
» . .
J R .
& ( \
& J J Mean Shift
. &
> s vector |

slide credit: Y. Ukrainitz & B. Sarel
fo

CZECH INSTITUTE
OF INFORMATICS

CyBERNETICS. Torsten Sattler

CTU IN PRAGUE

W



Recap: Mean Shift Algorithm

® Region of
o @ ® d interest
® ® ® ® 73 Center of
@ o T TR ® mass
Y )
/! @ ¥ > . @
¢ ® o o \g
» 9 © °,.,%00 | -
o o © o300 |® o
) o o990 ¢ |
9 @ & 9
® ©
J \ @ J @
o ® o
9 - .
° o 4 » o Mean Shift
o _ vector

slide credit: Y. Ukrainitz & B. Sarel
fo

CZECH INSTITUTE
OF INFORMATICS

CyBERNETICS. Torsten Sattler

CTU IN PRAGUE

W



Recap: Mean Shift Algorithm

® Region of
o @ ® d interest
® ® ® ® 73 Center of
@ o T TR ® mass
® ?
9 ®
o o ¢ ¢
o o
® ® © o \g o
* ¢ o o | -
o ® O )
209 |
o o © o 6600 ° o
® \ o ¢ 99%0 ¢ |
? @ ? ?
e ©
o o » °
o ® o
" . .
° o J o . Mean Shift
@ _ vector

slide credit: Y. Ukrainitz & B. Sarel
fo

CZECH INSTITUTE
OF INFORMATICS

CyBERNETICS. Torsten Sattler

CTU IN PRAGUE

W



Recap: Mean Shift Algorithm

® Region of
o @ ® d interest
® ® ® ® "3 Center of
o @ _—8—_ @ mass
& J
@ ® & o ® [\
® / @ @ @ g\ o
) 9 { & " \ 9
% Teeg®*
o o |®©6 o cGoe @ o
® \\ o J ®9 0 o
e »
& o\ & o
® ©
J K 9 @
o ® o o
9
# > >
9 4

slide credit: Y. Ukrainitz & B. Sarel
fo

CZECH INSTITUTE
OF INFORMATICS

CyBERNETICS. Torsten Sattler

CTU IN PRAGUE

W



Recap: Mean Shift Clustering

 Clusters: all data points in attraction basin of mode
* Attraction basin: regions where mean shift leads to same mode

Torsten Sattler
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Examples

L "

[D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002]

slide credit: Vaclav Hlavac, Bastian Leibe, Svetlana Lazebnik
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Lecture Overview - Today

stmple §
hewrtstie

e Segmentation as a statistical (unsupervised) learning
problem: expectation maximization (EM) algorithm

complex § |
principled

Graph-based segmentation

slide credit: Vaclav Hlavac
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A Statistical Learning Perspective on Clustering

e Basic questions of practical relevance:
 \What is the shape of each cluster?
 What is the probability a point p belongs to cluster ¢
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A Statistical Learning Perspective on Clustering

e Basic questions of practical relevance:

 \What is the shape of each cluster?

 What is the probability a point p belongs to cluster ¢
* k-means clustering cannot answer these questions

e Statistical approach:

 There is a generative model: function relating observations x € X and their
hidden state (class label) y € Y

» Described via the joint probability measure p(x, y | ®) defined by

parameters ®
e \Want to learn the parameters from data

slide credit: Bastian Leibe

Torsten Sattler 17



Supervised Learning

» If we have p(x, y|®), we can define classifier / decision function
y = q(x|©) = argmax, p(x,y|©)
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Unsupervised Learning

» If we have p(x, y|®), we can define classifier / decision function

y = g(x|©) = argmax, p(x, y| ©)

» Unsupervised learning: given unlabelled training data (x,,

slide credit: Vaclav Hlavac
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Unsupervised Learning

» Unsupervised learning: given unlabelled training data (x, ..., x,)

» Chicken-and-egg problem: if we have ®, we can compute y = g(x | ®); if
we have y, we can compute ®
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Unsupervised Learning

» Unsupervised learning: given unlabelled training data (x, ..., x,)

» Chicken-and-egg problem: if we have ®, we can compute y = g(x | ®); if
we have y, we can compute ®
e Sounds familiar?

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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Mixture of Gaussians

* Mixture of Gaussians is one generative model;
o K Gaussian blobs with means H;, COV. matrices Zj, dimensionality D

|
——(x = N>y — .
PRI €XP( 2(36 1) E(x ﬂ,))

» Gaussian j selected with probability 7;

p(x| Q) =

e Likelihood of observing data point x is weighted mixture of Gaussians:

K
p(x|©) =Y zp(x|©) © = (7,41, %, ... 7. iy, )
j=1

slide credit: Bastian Leibe

Torsten Sattler
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Expectation Maximization (EM) Algorithm

» Goal: find parameters ® that maximize likelihood function:

p(data|®) = [ [ p(x;| ©)
=1

slide credit: Bastian Leibe, Steve Seitz
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Expectation Maximization (EM) Algorithm

» Goal: find parameters ® that maximize likelihood function:

p(data|®) = [ [ p(x;| ©)
=1

e Expectation Maximization (EM) approach:
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» Goal: find parameters ® that maximize likelihood function:
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Expectation Maximization (EM) Algorithm

» Goal: find parameters ® that maximize likelihood function:

p(data|®) = [ [ p(x;| ©)
=1

e Expectation Maximization (EM) approach:

« Obtain initial estimate ®" for ®
 Repeat:
e E-step: given O assign data points to Gaussians
 M-step: given assignments, estimate e+l by maximizing
likelihood function

slide credit: Bastian Leibe, Steve Seitz

Torsten Sattler
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Expectation Maximization (EM) Algorithm

o E-step: compute soft assignment of data points to mixture components:

i) = %
=1 ﬂk‘/’/ (xi ‘ His Zk)
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Expectation Maximization (EM) Algorithm

o E-step: compute soft assignment of data points to mixture components:

i) = =k
=1 ﬂk‘/’/ (xi ‘ His 2k)

o M-step: use soft assignments to re-estimate parameters G)j per component:

n
N; = Z y/(x;) = soft number of points assigned to cluster j
i=1

]Z'.new p—

s N;/n = probability of component j
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new _ —
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N.
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Expectation Maximization (EM) Algorithm

o E-step: compute soft assignment of data points to mixture components:

i) = =k
=1 ﬂk‘/’/ (xi ‘ His 2k)

o M-step: use soft assignments to re-estimate parameters G)j per component:

n
N; = Z y/(x;) = soft number of points assigned to cluster j
i=1

ﬂjnew = Nj/n = probability of component j
1 n 1 n

,,t]new = Z y{(x;)x; = new cluster center ZJDeW =3 Z 7i(x)(x; — /,t]f‘eW)T(xi — /,tjf‘eW)
J i=1 J i=1
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 k-means clustering is a special case of EM algorithm
e (Gaussian mixture model with unit covariances
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K-Means as Expectation Maximization

 k-means clustering is a special case of EM algorithm
e (Gaussian mixture model with unit covariances

e E-step: hard assignments to component:
1 .
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EM Algorithm for Segmentation

Original image

slide credit: Bastian Leibe image credit: Serge Belongie
i
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The EM Algorithm

* (General statistical approach for missing data / data with hidden states
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The EM Algorithm

* (General statistical approach for missing data / data with hidden states

e Can be used to obtain Maximum Likelihood Estimate (MLE) even if MLE
cannot be computed directly

e General concept:
» Marginalize over hidden states y € Y: p(x|©) =) p(x,y|©)

o Simplify estimation of p(x|®) by inferring hiddeyn states
* Guaranteed to converge as cost function decreases monotonically (proof via
special form of Jensen's inequality)

* No general guarantees about global optimality, EM Is essentially gradient
ascent

slide credit: Vaclav Hlavac
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_ The EM Algorithm

* Probabillistic interpretation of data
e Soft assignments instead of hard assignments
 (Generative model: can predict new datapoint

slide credit: Bastian Leibe
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_ The EM Algorithm

* Probabillistic interpretation of data
e Soft assignments instead of hard assignments
 (Generative model: can predict new datapoint

e Cons:
e Local optimization will lead to local minima

e [nitialization is very important (e.g., use multiple k-means runs and pick
the best run as initialization)

e Singular clusters can be a problem

e Similar to k-means clustering: need estimate for K

* Need to choose proper generative model
* Numerical instabilities can be an issue

slide credit: Bastian Leibe
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Lecture Overview - Today

stmple §
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e Segmentation as a statistical (unsupervised) learning
problem: expectation maximization (EM) algorithm

complex § |
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Graph-based segmentation
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Graphical Models

* Graphical representation of our models so far
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Graphical Models

* Graphical representation of our models so far

observations (e.g., colors, tntensities)
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Graphical Models

* Graphical representation of our models so far

observations (e.g., colors, tntensities)

) hidodewn state (LaeLs)
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Graphical Models

* Graphical representation of our models so far

observations (e.g., colors, tntensities)
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Graphical Models

* Graphical representation of our models so far

observations (e.g., colors, tntensities)

T compatibility of observation and Label: ®(x;, )

D2, find labelling y that maximizes p(x,y) = | | ®(x, y)
» hidden state (LaeLs) i

Torsten Sattler
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Markov Random Fields (MRFs)

* Take also compatibility between labels into account
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Markov Random Fields (MRFs)

* Take also compatibility between labels into account

observations (e.g., colors, tntensities)

- . . o
f A 4 »
R : 5 Iy 9 I %
. ‘ .', p »' .’, y
<‘-",, ] 5
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Markov Random Fields (MRFs)

* Take also compatibility between labels into account

observations (e.g., colors, tntensities)
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Markov Random Fields (MRFs)

* Take also compatibility between labels into account

observations (e.g., colors, tntensities)

- . . o
f A 4 »
R : 5 Iy 9 I %
. ‘ .', p »' .’, y
<‘-",, ] Y o4 9 .

T compatibility of observation and Label: O(x;, )

Torsten Sattler
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Markov Random Fields (MRFs)

* Take also compatibility between labels into account
observations (e.g., colors, tntensities)

T compatibility of observation and Label: O(x;, )

. P ) compatibility of neighboring Labels: ¥(y;, )

Torsten Sattler
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Markov Random Fields (MRFs)

* Take also compatibility between labels into account

observations

l
per.y) = | [y | [Y0: )
i i.j

|

hiddewn states

slide credit: Bastian Leibe

Torsten Sattler
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Markov Random Fields (MRFs)

* Take also compatibility between labels into account

observation-state

obser\/atbo WS compatibi LLL’Cg function

- \P(yia )’j)
hioden states

slide credit: Bastian Leibe

Torsten Sattler

(x y) = H<I>( 1 | RIS
X
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Markov Random Fields (MRFs)

* Take also compatibility between labels into account

observation-state
compatLbLLL‘cg fuuz\,otww

(x y) = H<I>( 1 | RIS
X

hioden states

obser\/atwv\,s

\P(yia y])

state-state oompatibiti’cg function

slide credit: Bastian Leibe

Torsten Sattler
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Markov Random Fields (MRFs)

* Take also compatibility between labels into account

observation-state netghboring
observations oompatLbLLL’cg function nooles

p()lc V) = H <I>(xp yZ)H ‘P(y:{\y]

), - [}
<3 N R
‘ N ~ .
o B .', “ -
v K- v i K
K, Q ’ Q
~ A3 R [
. . ~! - g
. o . d \
o oy ‘: =
L - Sl did AP
. "4 T Y e e TS 1 9
f | e g-rcm s, T NN & ,
o p ' 2 ¥ , 3 JF
-od : e X ’
e L S L e . SR
"N " Ik - Y " A )
8- . z
N - . RN -
S P
‘\. e d
x e ‘q\\
" ~ /\ ~ /. f
/2 'y / 2 'y U
d B\ y Cd NS .
O A A
o N - B - - - - . 3
3 .,I‘,f‘— a9 P S OR -y 3 J‘,
(y ] y .)

hiddewn states

state-state oompatibiti’cg function

slide credit: Bastian Leibe

Torsten Sattler
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Markov Random Fields (MRFs)

* Take also compatibility between labels into account

, observation-state netghboring
Dbsewaui""s oompatLbLLL’cg function nodes
o px.y) = | ] bos, | | P30y )
Wny) T
hiddewn states

state-state compatibility function
 Modular and local graphical model, can model global effects

slide credit: Bastian Leibe

Torsten Sattler
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Markov Random Fields (MRFs)

* Maximizing joint probability P(X,y) = H(D(Xi, yi)H‘{'(yi, Yj)
j i

slide credit: Bastian Leibe

Torsten Sattler

32



Markov Random Fields (MRFs)

* Maximizing joint probability P(X,y) = H(D(Xi, yi)H‘{'(yi, Yj)
i ij
* |dentical to minimizing negative log:

—log(p(x,y)) = — Z log (P(x;,y,)) — Z log (\P(yl'a yj))

l,]

slide credit: Bastian Leibe

Torsten Sattler
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Markov Random Fields (MRFs)

* Maximizing joint probability P(X,y) = H(D(Xi, yi)H‘{'(yi, Yj)
i ij
* |dentical to minimizing negative log:
~log(p(x,y) = = . log (B, ) = Y. log (0,3
L)

E(x,y) = Z P(x;, y;) + Z Wy ;)
i i

slide credit: Bastian Leibe

Torsten Sattler
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Markov Random Fields (MRFs)

* Maximizing joint probability P(X,y) = H(D(Xi, yi)H‘{'(yi, Yj)
j i

* |dentical to minimizing negative log:

—log(p(x,y)) = — Z log (P(x;,y,)) — Z log (\P(yl'a yj))
]

E(x,y) = Z P(x;, y;) + Z Wi )
i i,

e Similar to free-energy problems in statistical mechanics (spin glass theory)

slide credit: Bastian Leibe

Torsten Sattler
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Markov Random Fields (MRFs)

* Maximizing joint probability P(X,y) = H(D(Xi, yi)H‘{'(yi, Yj)
j i

* |dentical to minimizing negative log:

—log(p(x,y)) = — Z log (P(x;,y,)) — Z log (\P(yl'a yj))
]

E(x,y) = Z P(x;, y;) + Z Wi )
i i,

e Similar to free-energy problems in statistical mechanics (spin glass theory)

» E(x,y) thus analogously referred to as an energy function

slide credit: Bastian Leibe

Torsten Sattler
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Energy Minimization
E(x,y) = Z P(x;, y;) + Z W (yis yj) _;’
i L,J

slide credit: Bastian Leibe
fo
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Energy Minimization

E(x,y) = Z P(x; y;) + Z Wy )

)
sw\,g Le-node
potewtm ls
slide credit: Bastian Leibe
cfg.:?:;%::g%fs Torsten Sattler
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Energy Minimization

E(x,y) = Z P(x; y;) + Z Wi Yj)

) )
sw\,g le-node paLYwise
potewtm ls potewtm ls

slide credit: Bastian Leibe

Torsten Sattler
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Energy Minimization

E(x,y) = Z P(x; y;) + Z Wi Yj)

) )
sw\,g le-node paLYwise
potewtm ls potewtm ls

e Single-node potentials (“unary potentials”™):

slide credit: Bastian Leibe

Torsten Sattler
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Energy Minimization

E(x,y) = Z P(x;, ;) + Z w(y; yj)
i, ij

stngle-node PALYWLSE

potentials potentials

e Single-node potentials (“unary potentials”™):
e Encode local information about each pixel / patch / super pixel

slide credit: Bastian Leibe

Torsten Sattler
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Energy Minimization
E(x,y) = 2 ¢(xz’ yl) T 2 V/(yl’y] |

) )
sw\,g le-node paLYwise
potewtm ls potewtm ls

e Single-node potentials (“unary potentials”™):
e Encode local information about each pixel / patch / super pixel

* How likely is it that pixel x; belongs to label y, / foreground / background, etc.

slide credit: Bastian Leibe

Torsten Sattler
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Energy Minimization
E(x,y) = 2 P(x;, y;) + Z W (yis yj) _;’

’ i’j ’ ’
stngle-node PALYWLSE
potewtia ls potewtia ls

e Single-node potentials (“unary potentials”™):
e Encode local information about each pixel / patch / super pixel

* How likely is it that pixel x; belongs to label y, / foreground / background, etc.
e Example choice: Mixture of Gaussians (see lab)

¢(x;,y;10,) = — log Z 05 (vis Pk | YN (X | pgr 2)
k

slide credit: Bastian Leibe

Torsten Sattler
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Energy Minimization

E(x,y) = Z P(x; y;) + Z Wi Yj)

) )
sw\,g le-node paLYwise
potewtm ls potewtm ls

* Pairwise potentials ("binary potentials”):

slide credit: Bastian Leibe

Torsten Sattler
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Energy Minimization
E(x,y) = 2 ¢(xz’ yl) T 2 V/(yl’y] |

) )
sw\,g le-node paLYwise
potewtm ls potewtm ls

* Pairwise potentials ("binary potentials”):
 Encode information about local neighborhoods, e.g., neighboring 4 or 8 pixels

slide credit: Bastian Leibe

Torsten Sattler
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Energy Minimization
E(x,y) = 2 ¢(xz’ yl) T 2 V/(yl’y] |

) )
sw\,g le-node paLYwise
potewtm ls potewtm ls

e Pairwise potentials (“binary potentials™):
 Encode information about local neighborhoods, e.g., neighboring 4 or 8 pixels
 How likely is it that two pixels should have the same / different labels?

slide credit: Bastian Leibe

Torsten Sattler
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Energy Minimization
E(x,y) = 2 P(x;, y;) + Z W (yis yj) _;’

’ i’j ’ ’
stngle-node PALYWLSE
potewtia ls potewtia ls

e Pairwise potentials (“binary potentials™):
 Encode information about local neighborhoods, e.g., neighboring 4 or 8 pixels
 How likely is it that two pixels should have the same / different labels?

e Example choice: “contrast sensitive Potts model” (see Ial:%)
1 = xll

W(yia y] ‘ 91//) —_ Hllfé(yl ;é y])e 2 avg(llxi—lelz)

slide credit: Bastian Leibe

Torsten Sattler
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E(x,y) = Z P(x;, y;) + Z Wi ;)

image

Energy Minimization

’ i’j ’ ’
stngle-node PALYWLSE
potewtia ls potewtia ls

:
=" ~ = :
’
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e
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Pl :
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»

unary potentials binary potentials segmentation

slide credit: Bastian Leibe, Phil Torr
fo
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MRF - Example

Original image

slide credit: Bastian Leibe
fo

CZECH INSTITUTE
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ROBOTICS AND
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Degraded image

Torsten Sattler

-—

Reconstruction
from MRF modeling
pixel neighborhood

statistics
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MRF - Example

-—

Original image Degraded image Reconstruction
from MRF modeling
pixel neighborhood

statistics

How to optimize MRFs?

slide credit: Bastian Leibe

Torsten Sattler
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Energy Minimization

* Want to infer the optimal labeling of pixels based on MRF energy

slide credit: Bastian Leibe

Torsten Sattler
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Energy Minimization

* Want to infer the optimal labeling of pixels based on MRF energy

 Many potential approaches for inference:

slide credit: Bastian Leibe

Torsten Sattler
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Energy Minimization

* Want to infer the optimal labeling of pixels based on MRF energy

 Many potential approaches for inference:
* Variational methods

slide credit: Bastian Leibe

Torsten Sattler
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Energy Minimization

* Want to infer the optimal labeling of pixels based on MRF energy

 Many potential approaches for inference:
* Variational methods
e Belief propagation

slide credit: Bastian Leibe

Torsten Sattler
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Energy Minimization

* Want to infer the optimal labeling of pixels based on MRF energy

 Many potential approaches for inference:
* Variational methods
e Belief propagation
e Graph cuts

slide credit: Bastian Leibe

Torsten Sattler
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Energy Minimization

* Want to infer the optimal labeling of pixels based on MRF energy

 Many potential approaches for inference:
* Variational methods
e Belief propagation

e Graph cuts

* Very efficient for computer vision / image analysis problems where we
have regular structure

slide credit: Bastian Leibe

Torsten Sattler
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Energy Minimization

* Want to infer the optimal labeling of pixels based on MRF energy

 Many potential approaches for inference:
* Variational methods
e Belief propagation

e Graph cuts

* Very efficient for computer vision / image analysis problems where we
have regular structure

* Optimality guarantees for certain class of energy functions
(submodular energies)

slide credit: Bastian Leibe

Torsten Sattler
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The s-t Mincut Problem
SOurce - terminal nodes S, f

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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The s-t Mincut Problem
Source - terminal nodes S, f

vertices V = {v,...,v. } U {s, 1}
W ®
()

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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The s-t Mincut Problem

Source s

terminal nodes S, f

vertices V = {v,...,v. } U {s, 1}

edoes E = ((s,Vv), (S, V), (V{, V1), ...}

Torsten Sattler
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The s-t Mincut Problem

terminal nodes S, t
vertices V = {v, ...,V } U {s, 1}

edoes E = ((s,Vv), (S, V), (V{, V1), ...}
costs C = {c(s,Vq), c(s,V,), c(Vi, V3), ...}

Torsten Sattler
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The s-t Mincut Problem

Source s

terminal nodes S, f
vertices V = {v,...,v. } U {s, 1}

edoes E = ((s,Vv), (S, V), (V{, V1), ...}

costs C = {c(s,Vq), c(s,V,), c(Vi, V3), ...}

s-t cut: partition 5, 7' C V with

SNT=g,ses,tel

Sink t

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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The s-t Mincut Problem

slide credit: Vaclav Hlavac, Bastian Leibe
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The s-t Mincut Problem

Cost of s-t cut:
cost of edges fromSto T

slide credit: Vaclav Hlavac, Bastian Leibe

ECH INSTITUTE
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The s-t Mincut Problem

Cost of s-t cut:

cost of edges fromSto T

cost: 6 + 2 +=23 =11

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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The s-t Mincut Problem

Cost of s-t cut:

cost of edges fromSto T

cost: F + 9 = 16

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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The s-t Mincut Problem

Cost of s-t cut:

cost of edges fromSto T

cost: 4 +2 +2=¢

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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The s-t Mincut Problem

Cost of s-t cut:

cost of edges fromSto T

cost: 4 +2 +2=¢

s-t mincut:

s-t cut with minimum cost

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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s-t Mincuts and MRFs

OO O @
O O ‘ minimize E(x,y) = 2 d(x;, ;) + Z w;; 6(y; # ;)
i ij
O @ @

pi,)(ets

slide credit: Vaclav Hlavac, Bastian Leibe,
Yuri Boykov

Torsten Sattler 42



s-t Mincuts and MRFs

OO O @
O O ‘ minimize E(x,y) = 2 d(x;, ;) + Z w;; 6(y; # ;)
i ij
O @ @

pi)(el,s

label T

slide credit: Vaclav Hlavac, Bastian Leibe,

Yuri Boykov

Torsten Sattler 42



s-t Mincuts and MRFs

O/[O/ @
Q O ‘ minimize E(x,y) = 2 d(x;, ;) + Z w;; 6(y; # ;)
i ij
O @ @

pi)(el,s

label T

slide credit: Vaclav Hlavac, Bastian Leibe,

Yuri Boykov

Torsten Sattler 42



s-t Mincuts and MRFs
P(x;,s) x exp( —||I; — ISHZ/ZGZ)

O/[O/ @
o O ‘ minimize E(x,y) = 2 d(x;, ;) + Z w;; 6(y; # ;)
i ij
O @ @

pi)(el,s

label T

slide credit: Vaclav Hlavac, Bastian Leibe,

Yuri Boykov

Torsten Sattler 42



s-t Mincuts and MRFs
d(x;, s) x exp( —||I. — ISH2/202)

pixels
minimize E(x,y) = Z P(x;,y,) + Z w;;io(y; 7 V)
l L,]

b(x, 1) & exp( = || — L||*/26?)

slide credit: Vaclav Hlavac, Bastian Leibe,
Yuri Boykov

Torsten Sattler 42



s-t Mincuts and MRFs
d(x;, s) x exp( —||I. — ISH2/202)

minimize E(x,y) = Z p(x;,y;) + Z Wi o(y; # y]’)
i i

b(x, 1) & exp( = || — L||*/26?)

slide credit: Vaclav Hlavac, Bastian Leibe,
Yuri Boykov

Torsten Sattler 42



s-t Mincuts and MRFs
d(x;, s) x exp( —||I. — ISH2/202)

minimize E(x,y) = Z p(x;,y;) + Z Wi o(y; # y]’)
i i

w;; = exp( —||I; — I]-H2/202)

b(x, 1) & exp( = || — L||*/26?)

slide credit: Vaclav Hlavac, Bastian Leibe,
Yuri Boykov

Torsten Sattler 42



s-t Mincuts and MRFs

cut edges with Low costs

label T

slide credit: Vaclav Hlavac, Bastian Leibe,
Yuri Boykov

Torsten Sattler
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s-t Mincuts and MRFs

cut edges with Low costs

label T

slide credit: Vaclav Hlavac, Bastian Leibe,
Yuri Boykov

Torsten Sattler
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s-t Mincuts and MRFs

cut edges with Low costs

Iabel 1

slide credit: Vaclav Hlavac, Bastian Leibe,
Yuri Boykov

Torsten Sattler
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s-t Mincuts and MRFs

cut edges with Low costs

resuttiwg COMPONENtS = LabeLLLV\,@

Iabel 1

slide credit: Vaclav Hlavac, Bastian Leibe,
Yuri Boykov
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s-t Mincuts and MRFs

cut edges with Low costs

resuttiwg COMPONENtS = LabeLLLV\,@

Q «—>
How to compute the s-t mincut?

Iabel 1

slide credit: Vaclav Hlavac, Bastian Leibe,
Yuri Boykov

Torsten Sattler 44



s-t Maxflow

terminal nodes S, f

vertices V = {v;,...,v, } U {s,}

edoges E = ((s,Vv)), (S, V), (V{, V1), ...}
capacities C = {c(S, vy), (S, V,), c(V(, V3), ... |

Source s

Torsten Sattler 45



s-t Maxflow

terminal nodes S, f

vertices V = {v;,...,v, } U {s,}

edoges E = ((s,Vv)), (S, V), (V{, V1), ...}
capacities C = {c(S, vy), (S, V,), c(V(, V3), ... |

Source s

s-t flow: functionf: £ — R s.t.

Sink t

slide credit: Vaclav Hlavac, Bastian Leibe
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s-t Maxflow

terminal nodes S, f

vertices V = {v;,...,v, } U {s,}

edoges E = ((s,Vv)), (S, V), (V{, V1), ...}
capacities C = {c(S, vy), (S, V,), c(V(, V3), ... |

Source s

s-t flow: functionf: £ — R s.t.
e capacity constraint: f(e) < c(e) Ve €E

Sink t

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler 45



s-t Maxflow

terminal nodes S, f

vertices V = {v;,...,v, } U {s,}

edoges E = ((s,Vv)), (S, V), (V{, V1), ...}
capacities C = {c(S, vy), (S, V,), c(V(, V3), ... |

Source s

s-t flow: functionf: £ — R s.t.
e capacity constraint: f(e) < c(e) Ve €E

e flow conservation:

~ Y A v) =Y flv,u)) Vve V\(st)

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler 45



Source s

Sink t

slide credit: Vaclav Hlavac, Bastian Leibe

CCCCCCC STITUTE
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s-t Maxflow

s-t maxtlow:
largest outgoing flow at s
= largest incoming flow at t

Torsten Sattler
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Source s

4 4

/
()

o)
AN
N
W

6

o S

Sink t

slide credit: Vaclav Hlavac, Bastian Leibe

s-t Maxflow

Torsten Sattler

s-t maxftlow:

largest outgoing flow at s
= largest incoming flow at t
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s-t Maxflow

Source s

2
max flow = g

Sink t

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler

s-t maxtlow:
largest outgoing flow at s
= largest incoming flow at t
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s-t Maxflow

Source s

s-t maxtlow:
largest outgoing flow at s
= largest incoming flow at t

2 ,
max flow = € = min cut

Sink t

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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s-t Maxflow

Source s
s-t maxtlow:

largest outgoing flow at s
= largest incoming flow at t

Theorem:
maxflow = mincut

2 ,
max flow = € = min cut

Sink t

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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Maxflow = Mincut

Source s

Theorem:

maxflow = mincut

2-2=0

max flow = & = min cut

Sink t

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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Maxflow = Mincut

Source s

Theorem:

maxflow = mincut

2-2=0

max flow = & = min cut

Sink t

slide credit: Vaclav Hlavac, Bastian Leibe

Torsten Sattler
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Computing Maxflow

Augmenting Path and Push-Relabel

year discoverer(s) bound

1951 Dantzig O(n*ml)

1955 Ford & Fulkerson O(m=U)

1970 Dinitz (:)(;:2111}

1972 Edmonds & Karp O(m*logl))

1973 | Dinitz O(nmiog U)

1974 Karzanov O(n?)

1977 Cherkassky O(n*m1/?)

1980 Galil & Naamad O(nmlog<n)

1983 Sleator & Tarjan O(nmlogn)

1986 Goldberg & Tarjan O(nmlog(n</m))

1987 Ahuja & Orlin O(nm 4+ nlogU)

1987 Ahuja et al. O(nmlog(ny/IoglU/m))
1989 Cheriyvan & Hagerup | E(nm + n?log?n)

1990 Cherivan et al. O(n?/logn)

1990 Alon O(nm + n®/>logn)

1992  King et al. O(nm 4+ nT°)

1993  Phillips & Westbrook | O(nm(log,,, n + 10g°T n))
1994 King et al. O(nm 109, /(n10gn) 1)
1007 Goldberg & Rao (.’)(_’/113'"”2 |Og(.r12:.f""m )Ylog )

(_.)(/12"3;!1 |Og(/12;’n/\) l0g {-)

n: #nodes

m.

U:

redges

maximum

edge weight

Algorithms
assume non-
negative edge
weights

slide credit: Andrew Goldberg, Bastian Leibe
fe
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Augmenting Path-Based Algorithms

1. Find path with non-zero capacity

Torsten Sattler
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Augmenting Path-Based Algorithms

1. Find path with non-zero capacity

Torsten Sattler
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Augmenting Path-Based Algorithms

1. Find path with non-zero capacity

2. Maximize flow on path

Torsten Sattler
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Augmenting Path-Based Algorithms

1. Find path with non-zero capacity

2. Maximize flow on path

Torsten Sattler
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Augmenting Path-Based Algorithms

1. Find path with non-zero capacity
2. Maximize flow on path

3. Repeat until no such path exists

Torsten Sattler
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Augmenting Path-Based Algorithms

1. Find path with non-zero capacity
2. Maximize flow on path

3. Repeat until no such path exists

Torsten Sattler
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Augmenting Path-Based Algorithms

1. Find path with non-zero capacity
2. Maximize flow on path

3. Repeat until no such path exists

Torsten Sattler
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Augmenting Path-Based Algorithms

1. Find path with non-zero capacity
2. Maximize flow on path

3. Repeat until no such path exists

Torsten Sattler
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Augmenting Path-Based Algorithms

1. Find path with non-zero capacity
2. Maximize flow on path

3. Repeat until no such path exists

Torsten Sattler

58



Augmenting Path-Based Algorithms

1. Find path with non-zero capacity
2. Maximize flow on path

3. Repeat until no such path exists

Torsten Sattler
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Augmenting Path-Based Algorithms

1. Find path with non-zero capacity
2. Maximize flow on path

3. Repeat until no such path exists

Assumes non-negative capacities

Torsten Sattler
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Maxflow on Images
10 SOPPOOP
x>

: 40. 000 .
000000 00

 Popularized by Boykov & Kolmogorov
* Dual search tree augmenting path algorithm [Boykov & Kolmogorov, PAMI 2004]
* Efficient approach for finding approximate shortest augmenting paths
* High worst-case complexity
* But works better than other methods on the grid graphs defined by images

slide credit: Pushmeet Kohli, Bastian Leibe

Torsten Sattler
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A Few More Words on Graph Cuts and MRFs

* Graph cuts globally optimal for binary energies that are submodular
* Multi-label problems with 3 or more labels are NP-hard
o Approximation algorithms extending graph cuts to multi-label case:

o af)-swap

o a-expansion: iteratively solve binary graph cuts (one label vs. all), factor 2
approximation to optimal solution

slide credit: Bastian Leibe
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A Few More Words on Graph Cuts and MRFs

* Minimum cuts can penalize large segments

* Avoid this problem through normalization by component size

. cut(A, B) cut(A, B)
° Normalized cut: + (assoc(A, V) = sum of weights of all edges in V that touch A)
assoc(A, V) assoc(B,V)

 NP-hard, approximation via generalized Eigenvalue problem [Shi & Malik,
Normalized Cuts and Image Segmentation, PAMI 2000}

slide credit: Vaclav Hlavac
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https://people.eecs.berkeley.edu/~malik/papers/SM-ncut.pdf
https://people.eecs.berkeley.edu/~malik/papers/SM-ncut.pdf

Application: Interactive Segmentation via GrabCut

B(x; 5)  exp( =T, - I,]I/26?)

P(x;, 1) o exp( —|I; = L||*/267)
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Application: Interactive Segmentation via GrabCut

.
B(x; 5)  exp( =T, - I,]I/26?)

How to obtain wmodels for foreground
and background?

P(x;, 1) o exp( —|I; = L||*/267)
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Application: Interactive Segmentation via GrabCut

slide credit: Carsten Rother [Rother, Kolmogorov, Blake, "GrabCut” — Interactive Foreground Extraction

using lterated Graph Cuts, SIGGRAPH 2004]
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https://www.microsoft.com/en-us/research/wp-content/uploads/2004/08/siggraph04-grabcut.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2004/08/siggraph04-grabcut.pdf

Application: Interactive Segmentation via GrabCut
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slide credit: Carsten Rother [Rother, Kolmogorov, Blake, "GrabCut” — Interactive Foreground Extraction

using lterated Graph Cuts, SIGGRAPH 2004]
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https://www.microsoft.com/en-us/research/wp-content/uploads/2004/08/siggraph04-grabcut.pdf
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Application: Interactive Segmentation via GrabCut
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slide credit: Carsten Rother [Rother, Kolmogorov, Blake, "GrabCut” — Interactive Foreground Extraction

using lterated Graph Cuts, SIGGRAPH 2004]
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Application: Interactive Segmentation via GrabCut
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Application: Interactive Segmentation via GrabCut
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slide credit: Carsten Rother [Rother, Kolmogorov, Blake, "GrabCut” — Interactive Foreground Extraction

using lterated Graph Cuts, SIGGRAPH 2004]
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Application: Interactive Segmentation via GrabCut
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Application: Interactive Segmentation via GrabCut
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lterated Graph Cuts

Input
slide credit: Carsten Rother [Rother, Kolmogorov, Blake, “GrabCut” — Interactive Foreground Extraction
P oF inrormanics using lterated Graph Cuts, SIGGRAPH 2004]
] S Torsten Sattler A

CTU IN PRAGUE


https://www.microsoft.com/en-us/research/wp-content/uploads/2004/08/siggraph04-grabcut.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2004/08/siggraph04-grabcut.pdf

lterated Graph Cuts
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Input
slide credit: Carsten Rother [Rother, Kolmogorov, Blake, "GrabCut” — Interactive Foreground Extraction
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lterated Graph Cuts
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(GMM) z
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Energy E
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EM optimization:
* Apply graph cut with current GMM
* Re-estimate GMM based on segmentation

slide credit: Carsten Rother [Rother, Kolmogorov, Blake, "GrabCut” — Interactive Foreground Extraction

CZecH INSTITUTE using lterated Graph Cuts, SIGGRAPH 2004]
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lterated Graph Cuts
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EM optimization:
* Apply graph cut with current GMM
* Re-estimate GMM based on segmentation
slide credit: Carsten Rother [Rother, Kolmogorov, Blake, "GrabCut” — Interactive Foreground Extraction
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lterated Graph Cuts

initial Gaussian Mixture Model .
(GMM) . - final GMM
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Energy E
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EM optimization:
* Apply graph cut with current GMM

. . Segmentation
* Re-estimate GMM based on segmentation J
slide credit: Carsten Rother [Rother, Kolmogorov, Blake, "GrabCut” — Interactive Foreground Extraction
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Application: Interactive Segmentation via GrabCut

Magic Wand Intelligent Scissors Bayes Matte Knockout 2 Graph cut GrabCut

%X’o« Xxx
X

[Mortensen and  [Chuang et al. [Corel Corp. [Boykov and
Barrett 1995] 2001] 2002] Jolly 2001]
slide credit: Carsten Rother [Rother, Kolmogorov, Blake, “GrabCut” — Interactive Foreground Extraction
Mg CZ5GH iNsTTuTE using lterated Graph Cuts, SIGGRAPH 2004]
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Quiz: Which Examples Are Easy,

Which Are Hard?

slide credit: Vaclav Hlavac, Carsten Rother
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Easier Examples

slide credit: Vaclav Hlavac, Carsten Rother
fe

CZECH INSTITUTE
OF INFORMATICS

CYBERNETICS Torsten Sattler

CTU IN PRAGUE

W

68



Harder Examp

slide credit: Vaclav Hlavac, Carsten Rother
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Other Examples for Graph Cuts

Image Restoration Stereo Disparity Estimation

slide credit: Vaclav Hlavac
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Graph Cuts - Summary

* Pros:
* Powerful approach, applicable to many labelling problems
 Based on probabilistic model (MRF)

* Efficient algorithms available for many computer vision / image analysis
problems

slide credit: Bastian Leibe
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Graph Cuts - Summary

* Pros:
* Powerful approach, applicable to many labelling problems
 Based on probabilistic model (MRF)

* Efficient algorithms available for many computer vision / image analysis
problems

e Cons:

 Graph cuts can only (optimally) solve limited range of problems (binary
submodular energy functions), not full range of what can be modeled by
MRFSs)

* Only approximations for multi-label case

slide credit: Bastian Leibe

Torsten Sattler
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